DC Circuit Analysis

HRW P639>
Circuit Symbols

- Resistor
- Voltage source (battery)
- Switch (open)
- Wire (Conductor)
What is a circuit?

A basic circuit comprises:

- **Voltage** source (ex. battery)
- **Load** (ex. Resistors)
- **Conductor** (ex. Wires)
- **Control** (ex. Switch)
DC Circuit Analysis

- DC Circuits are analyzed in 3 models
 - **Series** resistors
 - **Parallel** resistors
 - **Combination** resistors
- Circuit Analysis investigates:
 - Equivalent **resistance**
 - Circuit **current** in/out battery
 - **Voltage drop across** components
 - **Current through** components
DC Circuit Analysis - Series

- Components are connected “nose-tail” or inline
- There is only one path for the circuit current (I) to flow.
Examples of series circuits
Circuit Analysis - Series

![Circuit Diagram]

- **SW1**
- **V1**: 12 V
- **R1**: 10 Ω
- **R2**: 20 Ω
- **R_{tot}**: 30 Ω
DC Circuit Analysis – Series

- **Equivalent** (or total) resistance
 - \(R_T = R_1 + R_2 + R_3 \)
- **Current** is the same through all components = circuit current (I)
- **Voltage** drop across each resistor (n)
 - \(V_n = I \times R_n \)
 - Sum of voltage drops = battery voltage
DC Circuit Analysis – Series Practice

- Analyze the series circuit by calculating:
 - Equivalent resistance R_T
 - Circuit current (I) flowing into/out of the battery
 - Voltage drop across the 3, 4 and 5 ohm resistor
DC Circuit Analysis - Parallel

- Components are connected "side by side"
- There are multiple paths for the current to flow, splitting into branch currents through R1, R2 and R3, according to their resistive values.
- The circuit current (I) flows into/out of the battery.
Examples of parallel circuits

Ladder analogy
Circuit Analysis - Parallel

![Diagram of a parallel circuit with resistors and a voltage source.]

- **SW1**: Switch
- **V1**: 12 V voltage source
- **R18, R19, R20**: Resistors with values 100 Ω each
- **Ammeter**: Measures current through the circuit

- **R22**: 100 Ω resistor in another branch of the circuit.
DC Circuit Analysis – Parallel

- Equivalent resistance
 - \(\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \)
- Voltage is the same across all \(n \) resistors (V)
- Current in each resistor (\(I_n \))
 - \(I_n = \frac{V}{R_n} \)
DC Circuit Analysis – Parallel Practice

- Analyze a parallel circuit by finding:
 - Equivalent resistance \(R_T \)
 - Circuit current \(I \)
 - Current \(I_n \) through each of the resistors \(R_n \)
 - \(I_1 \) through \(R_1 \)
 - \(I_2 \) through \(R_2 \)
 - \(I_3 \) through \(R_3 \)
Circuit Analysis - Combo
DC Circuit Analysis – Combo

- Resistors are connected in both series (R3) and parallel (R1, R2) methods.

- Analyze by starting to simplify from the inside-out:
 - Simplify R1 and R2 \(> R_{12} \)
 - Add result \((R_{12}) \) to R3 for total circuit resistance \((R_{\text{tot}}) \)

- Calculate circuit current
 - \(I = \frac{V}{R_{\text{tot}}} \)

- Calculate currents through selected resistances

Shortcut: \(R_{\text{tot}} = R_3 + \frac{1}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)} \)
Parallel part of combo

- Consider current (I)
 - Passes through R3 in series with battery
 - Splits so that larger part goes through the low value resistor (R_{low}), and smaller part goes through high value (R_{high}) resistor
Given $V = 12V$, R_1, R_2 and $R_3 = 1, 2, 3$ ohm respectively, calculate:

- Equiv resistance (R_T)
- Circuit current (I)
- Current through R_2 (I_2)

See next slide
Combo Shortcut for current

- R₁ and R₂ are in parallel, so the voltage drop across each resistor is the same.
- Shortcut for calculating \(I_n \) when there are 2 resistors (\(R_{\text{low}} \) and \(R_{\text{high}} \)) in parallel:
 - \(I_{\text{low}} = \frac{R_{\text{high}}}{R_{\text{low}} + R_{\text{high}}} \times \text{circuit current (I)} \)
 - \(I_{\text{high}} = \frac{R_{\text{low}}}{R_{\text{low}} + R_{\text{high}}} \times \text{circuit current (I)} \)
- We are simply apportioning the current according to the resistance
 - Higher resistance = lower current (and v.v)

\(I_{\text{low}} = \text{current through } R_{\text{low}} \) & \(I_{\text{high}} = \text{current through } R_{\text{high}} \)