What You’ll Learn

- **Lessons 3-1, 3-2, and 3-5** Identify angle relationships that occur with parallel lines and a transversal, and identify and prove lines parallel from given angle relationships.
- **Lessons 3-3 and 3-4** Use slope to analyze a line and to write its equation.
- **Lesson 3-6** Find the distance between a point and a line and between two parallel lines.

Key Vocabulary

- parallel lines (p. 126)
- transversal (p. 127)
- slope (p. 139)
- equidistant (p. 160)

Why It’s Important

The framework of a wooden roller coaster is composed of millions of feet of intersecting lumber that often form parallel lines and transversals. Roller coaster designers, construction managers, and carpenters must know the relationships of angles created by parallel lines and their transversals to create a safe and stable ride. You will find how measures of angles are used in carpentry and construction in Lesson 3-2.
Prerequisite Skills To be successful in this chapter, you’ll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 3.

For Lesson 3-1 Naming Segments
Name all of the lines that contain the given point.
(For review, see Lesson 1-1.)
1. Q
2. R
3. S
4. T

For Lessons 3-2 and 3-5 Congruent Angles
Name all angles congruent to the given angle.
(For review, see Lesson 1-4.)
5. \(\angle 2 \)
6. \(\angle 5 \)
7. \(\angle 3 \)
8. \(\angle 8 \)

For Lessons 3-3 and 3-4 Equations of Lines
For each equation, find the value of \(y \) for the given value of \(x \). (For review, see pages 736 and 738.)
9. \(y = 7x - 12 \), for \(x = 3 \)
10. \(y = -\frac{2}{3}x + 4 \), for \(x = 8 \)
11. \(2x - 4y = 18 \), for \(x = 6 \)

Foldables Study Organizer
Parallel and Perpendicular Lines Make this Foldable to help you organize your notes. Begin with one sheet of 8 1/2” by 11” paper.

Step 1 Fold
Fold in half matching the short sides.

Step 2 Fold Again
Unfold and fold the long side up 2 inches to form a pocket.

Step 3 Staple or Glue
Staple or glue the outer edges to complete the pocket.

Step 4 Label
Label each side as shown. Use index cards to record examples.

Reading and Writing As you read and study the chapter, write examples and notes about parallel and perpendicular lines on index cards. Place the cards in the appropriate pocket.
RELATIONSHIPS BETWEEN LINES AND PLANES Lines ℓ and m are coplanar because they lie in the same plane. If the lines were extended indefinitely, they would not intersect. Coplanar lines that do not intersect are called parallel lines. Segments and rays contained within parallel lines are also parallel.

The symbol \parallel means is parallel to. Arrows are used in diagrams to indicate that lines are parallel. In the figure, the arrows indicate that PQ is parallel to RS.

Similarly, two planes can intersect or be parallel. In the photograph above, the roofs of each level are contained in parallel planes. The walls and the floor of each level lie in intersecting planes.

Vocabulary
• parallel lines
• parallel planes
• skew lines
• transversal
• consecutive interior angles
• alternate exterior angles
• alternate interior angles
• corresponding angles

Architect Frank Lloyd Wright designed many buildings using basic shapes, lines, and planes. His building at the right has several examples of parallel lines, parallel planes, and skew lines.

Geometry Activity

Draw a Rectangular Prism

A rectangular prism can be drawn using parallel lines and parallel planes.

Step 1 Draw two parallel planes to represent the top and bottom of the prism.

Step 2 Draw the edges. Make any hidden edges of the prism dashed.

Step 3 Label the vertices.

Analyze
1. Identify the parallel planes in the figure.
2. Name the planes that intersect plane ABC and name their intersections.
3. Identify all segments parallel to BF.
Notice that in the Geometry Activity, \(AE \) and \(GF \) do not intersect. These segments are not parallel since they do not lie in the same plane. Lines that do not intersect and are not coplanar are called **skew lines**. Segments and rays contained in skew lines are also skew.

Example 1 Identify Relationships

a. Name all planes that are parallel to plane \(ABG \).
 - plane \(CDE \)

b. Name all segments that intersect \(CH \).
 - \(BC, CD, CE, EH, \) and \(GH \)

c. Name all segments that are parallel to \(EF \).
 - \(AD, BC, \) and \(GH \)

d. Name all segments that are skew to \(BG \).
 - \(AD, CD, CE, EF, \) and \(EH \)

ANGLE RELATIONSHIPS

In the drawing of the railroad crossing, notice that the tracks, represented by line \(t \), intersect the sides of the road, represented by lines \(m \) and \(n \). A line that intersects two or more lines in a plane at different points is called a **transversal**.

Example 2 Identify Transversals

AIRPORTS Some of the runways at O’Hare International Airport are shown below. Identify the sets of lines to which each given line is a transversal.

a. line \(q \)
 - If the lines are extended, line \(q \) intersects lines \(\ell, n, p, \) and \(r \).

b. line \(m \)
 - lines \(\ell, n, p, \) and \(r \)

c. line \(n \)
 - lines \(\ell, m, p, \) and \(q \)

d. line \(r \)
 - lines \(\ell, m, p, \) and \(q \)

In the drawing of the railroad crossing above, notice that line \(t \) forms eight angles with lines \(m \) and \(n \). These angles are given special names, as are specific pairings of these angles.
Key Concept

<table>
<thead>
<tr>
<th>Name</th>
<th>Angles</th>
<th>Transversal p intersects lines q and r.</th>
</tr>
</thead>
<tbody>
<tr>
<td>exterior angles</td>
<td>$\angle 1, \angle 2, \angle 7, \angle 8$</td>
<td></td>
</tr>
<tr>
<td>interior angles</td>
<td>$\angle 3, \angle 4, \angle 5, \angle 6$</td>
<td></td>
</tr>
<tr>
<td>consecutive interior angles</td>
<td>$\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$</td>
<td></td>
</tr>
<tr>
<td>alternate exterior angles</td>
<td>$\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$</td>
<td></td>
</tr>
<tr>
<td>alternate interior angles</td>
<td>$\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$</td>
<td></td>
</tr>
<tr>
<td>corresponding angles</td>
<td>$\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$</td>
<td></td>
</tr>
</tbody>
</table>

Example 3 Identify Angle Relationships

Refer to the figure below. Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

a. $\angle 1$ and $\angle 7$
 - alternate exterior

b. $\angle 2$ and $\angle 10$
 - corresponding

c. $\angle 8$ and $\angle 9$
 - consecutive interior

d. $\angle 3$ and $\angle 12$
 - corresponding

e. $\angle 4$ and $\angle 10$
 - alternate interior

f. $\angle 6$ and $\angle 11$
 - alternate exterior

Check for Understanding

Concept Check

1. **OPEN ENDED** Draw a solid figure with parallel planes. Describe which parts of the figure are parallel.

2. **FIND THE ERROR** Juanita and Eric are naming alternate interior angles in the figure at the right. One of the angles must be $\angle 4$.

 - **Juanita**
 - $\angle 4$ and $\angle 9$
 - $\angle 4$ and $\angle 6$

 - **Eric**
 - $\angle 4$ and $\angle 10$
 - $\angle 4$ and $\angle 5$

 Who is correct? Explain your reasoning.

3. **Describe** a real-life situation in which parallel lines seem to intersect.

Guided Practice

For Exercises 4–6, refer to the figure at the right.

4. Name all planes that intersect plane ADM.

5. Name all segments that are parallel to \overline{CD}.

6. Name all segments that intersect \overline{KL}.
Identify the pairs of lines to which each given line is a transversal.

7. \(p \)
8. \(r \)
9. \(q \)
10. \(t \)

Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

11. \(\angle 7 \) and \(\angle 10 \)
12. \(\angle 1 \) and \(\angle 5 \)
13. \(\angle 4 \) and \(\angle 6 \)
14. \(\angle 8 \) and \(\angle 1 \)

MONUMENTS For Exercises 18–21, refer to the photograph of the Lincoln Memorial.
18. Describe a pair of parallel lines found on the Lincoln Memorial.
19. Find an example of parallel planes.
20. Locate a pair of skew lines.
21. Identify a transversal passing through a pair of lines.

Application

Practice and Apply

For Exercises 22–27, refer to the figure at the right.

22. Name all segments parallel to \(\overline{AB} \).
23. Name all planes intersecting plane \(BCR \).
24. Name all segments parallel to \(\overline{TU} \).
25. Name all segments skew to \(\overline{DE} \).
26. Name all planes intersecting plane \(EDS \).
27. Name all segments skew to \(\overline{AP} \).

Identify the pairs of lines to which each given line is a transversal.

28. \(a \)
29. \(b \)
30. \(c \)
31. \(r \)
Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

32. $\angle 2$ and $\angle 10$
33. $\angle 1$ and $\angle 11$
34. $\angle 5$ and $\angle 3$
35. $\angle 6$ and $\angle 14$
36. $\angle 5$ and $\angle 15$
37. $\angle 11$ and $\angle 13$
38. $\angle 8$ and $\angle 3$
39. $\angle 9$ and $\angle 4$

Name the transversal that forms each pair of angles. Then identify the special name for the angle pair.

40. $\angle 2$ and $\angle 9$
41. $\angle 7$ and $\angle 15$
42. $\angle 13$ and $\angle 17$
43. $\angle 8$ and $\angle 4$
44. $\angle 14$ and $\angle 16$
45. $\angle 6$ and $\angle 14$
46. $\angle 8$ and $\angle 6$
47. $\angle 14$ and $\angle 15$

48. **AVIATION** Airplanes heading eastbound are assigned an altitude level that is an odd number of thousands of feet. Airplanes heading westbound are assigned an altitude level that is an even number of thousands of feet. If one airplane is flying northwest at 34,000 feet and another airplane is flying east at 25,000 feet, describe the type of lines formed by the paths of the airplanes. Explain your reasoning.

STRUCTURES For Exercises 49–51, refer to the drawing of the gazebo at the right.

49. Name all labeled segments parallel to BF.
50. Name all labeled segments skew to AC.
51. Are any of the planes on the gazebo parallel to plane ADE? Explain.

52. **COMPUTERS** The word *parallel* when used with computers describes processes that occur simultaneously, or devices, such as printers, that receive more than one bit of data at a time. Find two other examples for uses of the word *parallel* in other subject areas such as history, music, or sports.

CRITICAL THINKING Suppose there is a line ℓ and a point P not on the line.

53. In space, how many lines can be drawn through P that do not intersect ℓ?
54. In space, how many lines can be drawn through P that are parallel to ℓ?

55. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How are parallel lines and planes used in architecture?

Include the following in your answer:

- a description of where you might expect to find examples of parallel lines and parallel planes, and
- an example of skew lines and nonparallel planes.
56. $\angle 3$ and $\angle 5$ are **___** angles.
 - (A) alternate interior
 - (B) alternate exterior
 - (C) consecutive interior
 - (D) corresponding

57. **GRID IN** Set M consists of all multiples of 3 between 13 and 31. Set P consists of all multiples of 4 between 13 and 31. What is one possible number in P but NOT in M?

Maintain Your Skills

Mixed Review

58. **PROOF** Write a two-column proof. *(Lesson 2-8)*

 Given: $m\angle ABC = m\angle DFE, m\angle 1 = m\angle 4$

 Prove: $m\angle 2 = m\angle 3$

59. **PROOF** Write a paragraph proof. *(Lesson 2-7)*

 Given: $PQ \cong ZY, QR \cong XY$

 Prove: $PR \cong XZ$

Determine whether a valid conclusion can be reached from the two true statements using the Law of Detachment or the Law of Syllogism. If a valid conclusion is possible, state it and the law that is used. If a valid conclusion does not follow, write *no conclusion*. *(Lesson 2-4)*

60. (1) If two angles are vertical, then they do not form a linear pair.

 (2) If two angles form a linear pair, then they are not congruent.

61. (1) If an angle is acute, then its measure is less than 90.

 (2) $\angle EFG$ is acute.

Find the distance between each pair of points. *(Lesson 1-3)*

62. $A(-1, -8), B(3, 4)$

63. $C(0, 1), D(-2, 9)$

64. $E(-3, -12), F(5, 4)$

65. $G(4, -10), H(9, -25)$

66. $J\left(1, \frac{1}{4}\right), K\left(-3, \frac{-7}{4}\right)$

67. $L\left(-5, \frac{8}{3}\right), M\left(5, \frac{-2}{3}\right)$

Draw and label a figure for each relationship. *(Lesson 1-1)*

68. \overline{AB} perpendicular to \overline{MN} at point P

69. line ℓ contains R and S but not T

Getting Ready for the Next Lesson

PREREQUISITE SKILL State the measures of linear pairs of angles in each figure. *(To review linear pairs, see Lesson 2-6.)*

70. 50°

71. $x^\circ, 2x^\circ$

72. $x^\circ, 2x^\circ$

73. $2y^\circ, 3y^\circ$

74. $x^\circ, 2x^\circ, 3x^\circ$

75. $(3x - 1)^\circ, (2x + 6)^\circ$
Angles and Parallel Lines

You can use The Geometer’s Sketchpad to investigate the measures of angles formed by two parallel lines and a transversal.

Step 1 Draw parallel lines.
- Place two points A and B on the screen.
- Construct a line through the points.
- Place point C so that it does not lie on \(\overline{AB} \).
- Construct a line through C parallel to \(\overline{AB} \).
- Place point D on this line.

Step 2 Construct a transversal.
- Place point E on \(\overline{AB} \) and point F on \(\overline{CD} \).
- Construct \(\overline{EF} \) as a transversal through \(\overline{AB} \) and \(\overline{CD} \).
- Place points G and H on \(\overline{EF} \), as shown.

Step 3 Measure angles.
- Measure each angle.

Analyze
1. List pairs of angles by the special names you learned in Lesson 3-1.
2. Which pairs of angles listed in Exercise 1 have the same measure?
3. What is the relationship between consecutive interior angles?

Make a Conjecture
4. Make a conjecture about the following pairs of angles formed by two parallel lines and a transversal. Write your conjecture in if-then form.
 - a. corresponding angles
 - b. alternate interior angles
 - c. alternate exterior angles
 - d. consecutive interior angles
5. Rotate the transversal. Are the angles with equal measures in the same relative location as the angles with equal measures in your original drawing?
6. Test your conjectures by rotating the transversal and analyzing the angles.
7. Rotate the transversal so that the measure of any of the angles is 90.
 - a. What do you notice about the measures of the other angles?
 - b. Make a conjecture about a transversal that is perpendicular to one of two parallel lines.
Angles and Parallel Lines

You’ll Learn

• Use the properties of parallel lines to determine congruent angles.
• Use algebra to find angle measures.

How can angles and lines be used in art?

In the painting, the artist uses lines and transversals to create patterns. The figure on the painting shows two parallel lines with a transversal passing through them. There is a special relationship between the angle pairs formed by these lines.

PARALLEL LINES AND ANGLE PAIRS

In the figure above, ∠1 and ∠2 are corresponding angles. When the two lines are parallel, there is a special relationship between these pairs of angles.

Postulate 3.1

Corresponding Angles Postulate

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

Examples: ∠1 ≅ ∠5, ∠2 ≅ ∠6, ∠3 ≅ ∠7, ∠4 ≅ ∠8

Example 1

Determine Angle Measures

In the figure, m∠3 = 133. Find m∠5.

∠3 ≅ ∠7 Corresponding Angles Postulate
∠7 ≅ ∠5 Vertical Angles Theorem
∠3 ≅ ∠5 Transitive Property
m∠3 = m∠5 Definition of congruent angles
133 = m∠5 Substitution

In Example 1, alternate interior angles 3 and 5 are congruent. This suggests another special relationship between angles formed by two parallel lines and a transversal. Other relationships are summarized in Theorems 3.1, 3.2, and 3.3.
Theorem 3.4

Perpendicular Transversal Theorem
In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Proof

Given: $p \parallel q$, $t \perp p$
Prove: $t \perp q$

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $p \parallel q$, $t \perp p$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\angle 1$ is a right angle.</td>
<td>2. Definition of \perp lines</td>
</tr>
<tr>
<td>3. $m\angle 1 = 90$</td>
<td>3. Definition of right angle</td>
</tr>
<tr>
<td>4. $\angle 1 \equiv \angle 2$</td>
<td>4. Corresponding Angles Postulate</td>
</tr>
<tr>
<td>5. $m\angle 1 = m\angle 2$</td>
<td>5. Definition of congruent angles</td>
</tr>
<tr>
<td>6. $m\angle 2 = 90$</td>
<td>6. Substitution Property</td>
</tr>
<tr>
<td>7. $\angle 2$ is a right angle.</td>
<td>7. Definition of right angles</td>
</tr>
<tr>
<td>8. $t \perp q$</td>
<td>8. Definition of \perp lines</td>
</tr>
</tbody>
</table>
Example 2 Use an Auxiliary Line

Grid-In Test Item

What is the measure of \(\angle GHI \)?

Read the Test Item

You need to find \(m\angle GHI \). Be sure to identify it correctly on the figure.

Solve the Test Item

Draw \(\overline{JK} \) through \(H \) parallel to \(\overline{AB} \) and \(\overline{CD} \).

\[
\begin{align*}
\angle EHK \cong \angle AEH & \quad \text{Alternate Interior Angles Theorem} \\
m\angle EHK &= m\angle AEH & \text{Definition of congruent angles} \\
m\angle EHK &= 40 & \text{Substitution} \\
\angle FHK \cong \angle CFH & \quad \text{Alternate Interior Angles Theorem} \\
m\angle FHK &= m\angle CFH & \text{Definition of congruent angles} \\
m\angle FHK &= 70 & \text{Substitution} \\
m\angle GHI &= m\angle EHK + m\angle FHK & \text{Angle Addition Postulate} \\
&= 40 + 70 \text{ or } 110 & m\angle EHK = 40, m\angle FHK = 70
\end{align*}
\]

Write each digit of 110 in a column of the grid. Then shade in the corresponding bubble in each column.

Test-Taking Tip

Make a Drawing If you are allowed to write in your test booklet, sketch your drawings near the question to keep your work organized. Do not make any marks on the answer sheet except your answers.

ALGEBRA AND ANGLE MEASURES Angles formed by two parallel lines and a transversal can be used to find unknown values.

Example 3 Find Values of Variables

ALGEBRA If \(m\angle 1 = 3x + 40 \), \(m\angle 2 = 2(y - 10) \), and \(m\angle 3 = 2x + 70 \), find \(x \) and \(y \).

- **Find** \(x \).

 Since \(\overline{FG} \parallel \overline{EH} \), \(\angle 1 \cong \angle 3 \) by the Corresponding Angles Postulate.

 \[
 \begin{align*}
 m\angle 1 &= m\angle 3 & \text{Definition of congruent angles} \\
 3x + 40 &= 2x + 70 & \text{Substitution} \\
 x &= 30 & \text{Subtract } 2x \text{ and } 40 \text{ from each side.}
 \end{align*}
 \]

- **Find** \(y \).

 Since \(\overline{FE} \parallel \overline{GH} \), \(\angle 1 \cong \angle 2 \) by the Alternate Exterior Angles Theorem.

 \[
 \begin{align*}
 m\angle 1 &= m\angle 2 & \text{Definition of congruent angles} \\
 3x + 40 &= 2(y - 10) & \text{Substitution} \\
 3(30) + 40 &= 2(y - 10) & x = 30 \\
 130 &= 2y - 20 & \text{Simplify.} \\
 150 &= 2y & \text{Add } 20 \text{ to each side.} \\
 75 &= y & \text{Divide each side by } 2.
 \end{align*}
 \]
1. Determine whether ∠1 is always, sometimes, or never congruent to ∠2. Explain.

2. OPEN ENDED Use a straightedge and protractor to draw a pair of parallel lines cut by a transversal so that one pair of corresponding angles measures 35°.

3. Determine the minimum number of angle measures you would have to know to find the measures of all of the angles in the figure for Exercise 1.

4. State the postulate or theorem that allows you to conclude ∠3 ≅ ∠5 in the figure at the right.

Guided Practice

In the figure, m∠3 = 110 and m∠12 = 55.
Find the measure of each angle.
5. ∠1 6. ∠6
7. ∠2 8. ∠10
9. ∠13 10. ∠15

Find x and y in each figure.
11.
12.
13. SHORT RESPONSE Find m∠1.

In the figure, m∠9 = 75. Find the measure of each angle.
14. ∠3 15. ∠5
16. ∠6 17. ∠8
18. ∠11 19. ∠12

In the figure, m∠3 = 43. Find the measure of each angle.
20. ∠2 21. ∠7
22. ∠10 23. ∠11
24. ∠13 25. ∠16

In the figure, m∠1 = 50 and m∠3 = 60. Find the measure of each angle.
26. ∠4 27. ∠5
28. ∠2 29. ∠6
30. ∠7 31. ∠8
32. Find x and y in each figure.
\[
\begin{align*}
4x^\circ & \quad 56^\circ \\
(3y - 11) & \quad (3y - 11)
\end{align*}
\]

33. Find $m\angle 1$ in each figure.
\[
\begin{align*}
110^\circ & \\
1 & \\
37^\circ & \\
1 & \\
157^\circ & \\
90^\circ & \\
& (2x + 5)^\circ
\end{align*}
\]

34. Find x, y, and z in each figure.
\[
\begin{align*}
(4x + 2)^\circ & \\
(3y - 11)^\circ & \\
& (y + 19)
\end{align*}
\]

35. Find x, y, and z in each figure.
\[
\begin{align*}
(3x - 15)^\circ & \\
1 & \\
68^\circ & \\
2x^\circ & \\
(y^\circ) & \\
\end{align*}
\]

36. **CARPENTRY** Anthony is building a picnic table for his patio. He cut one of the legs at an angle of 40°. At what angle should he cut the other end to ensure that the top of the table is parallel to the ground?

37. **PROOF** Copy and complete the proof of Theorem 3.3.

Given: $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

$\angle 2 \cong \angle 7$

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\ell \parallel m$</td>
<td>1. ?</td>
</tr>
<tr>
<td>2. $\angle 1 \cong \angle 5$, $\angle 2 \cong \angle 6$</td>
<td>2. ?</td>
</tr>
<tr>
<td>3. $\angle 5 \cong \angle 8$, $\angle 6 \cong \angle 7$</td>
<td>3. ?</td>
</tr>
<tr>
<td>4. $\angle 1 \cong \angle 8$, $\angle 2 \cong \angle 7$</td>
<td>4. ?</td>
</tr>
</tbody>
</table>

38. **PROOF** Write a two-column proof of Theorem 3.2.

39. **PROOF** Write a paragraph proof of Theorem 3.4.

40. **CONSTRUCTION** Parallel drainage pipes are laid on each side of Polaris Street. A pipe under the street connects the two pipes. The connector pipe makes a 65° angle as shown. What is the measure of the angle it makes with the pipe on the other side of the road?
43. **CRITICAL THINKING** Explain why you can conclude that \(\angle 2 \) and \(\angle 6 \) are supplementary, but you cannot state that \(\angle 4 \) and \(\angle 6 \) are necessarily supplementary.

44. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How can angles and lines be used in art?

Include the following in your answer:
- a description of how angles and lines are used to create patterns, and
- examples from two different artists that use lines and angles.

45. Line \(\ell \) is parallel to line \(m \). What is the value of \(x \)?

46. **ALGEBRA** If \(ax = bx + c \), then what is the value of \(x \) in terms of \(a \), \(b \), and \(c \)?

\[
\begin{align*}
\text{A} & \quad \frac{c}{a+b} \\
\text{B} & \quad \frac{b}{a+c} \\
\text{C} & \quad \frac{c}{a-b} \\
\text{D} & \quad \frac{b+c}{a}
\end{align*}
\]

47–50. Refer to the figure at the right. (Lesson 3-1)

47. Name all segments parallel to \(\overline{AB} \).
48. Name all segments skew to \(\overline{CH} \).
49. Name all planes parallel to \(AEF \).
50. Name all segments intersecting \(\overline{GH} \).

51–52. Find the measure of each numbered angle. (Lesson 2-8)

53. Identify the hypothesis and conclusion of each statement. (Lesson 2-3)

54. A balanced diet will keep you healthy.

55–59. PREREQUISITE SKILL Simplify each expression. (To review simplifying expressions, see pages 735 and 736.)

55. \(\frac{7 - 9}{8 - 5} \)
56. \(\frac{-3 - 6}{2 - 8} \)
57. \(\frac{14 - 11}{23 - 15} \)
58. \(\frac{15 - 23}{14 - 11} \)
59. \(\frac{2}{9} \cdot \left(\frac{18}{5} \right) \)

51. \(124^\circ \)

52. \(53^\circ \)

53. \(1 \)

54. \(2 \)

55. \(\overline{5} \parallel \overline{6} \) and \(m \angle 1 = 105^\circ \). (Lesson 3-2)

56. \(\angle 6 \) and \(\angle 4 \)

Practice Quiz 1

State the transversal that forms each pair of angles. Then identify the special name for the angle pair. (Lesson 3-1)

1. \(\angle 1 \) and \(\angle 8 \) 2. \(\angle 6 \) and \(\angle 10 \) 3. \(\angle 11 \) and \(\angle 14 \)

Find the measure of each angle if \(\ell \parallel m \) and \(m \angle 1 = 105^\circ \). (Lesson 3-2)

4. \(\angle 6 \) 5. \(\angle 4 \)
Slopes of Lines

What You’ll Learn

• Find slopes of lines.
• Use slope to identify parallel and perpendicular lines.

Vocabulary

• slope
• rate of change

Traffic signs are often used to alert drivers to road conditions. The sign at the right indicates a hill with a 6% grade. This means that the road will rise or fall 6 feet vertically for every 100 horizontal feet traveled.

SLOPE OF A LINE

The slope of a line is the ratio of its vertical rise to its horizontal run.

\[
\text{slope} = \frac{\text{vertical rise}}{\text{horizontal run}}
\]

In a coordinate plane, the slope of a line is the ratio of the change along the y-axis to the change along the x-axis.

Key Concept

The slope \(m \) of a line containing two points with coordinates \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula

\[
m = \frac{y_2 - y_1}{x_2 - x_1}, \text{ where } x_1 \neq x_2.
\]

The slope of a line indicates whether the line rises to the right, falls to the right, or is horizontal. The slope of a vertical line, where \(x_1 = x_2 \), is undefined.

Example 1

Find the Slope of a Line

Find the slope of each line.

a. Use the rise over run method.
 From \((-3, -2)\) to \((-1, 2)\), go up 4 units and right 2 units.
 \[
 \frac{\text{rise}}{\text{run}} = \frac{4}{2} \text{ or } 2
 \]

b. Use the slope formula.
 Let \((-4, 0)\) be \((x_1, y_1)\) and \((0, -1)\) be \((x_2, y_2)\).
 \[
 m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 0}{0 - (-4)} = \frac{-1}{4} \text{ or } -\frac{1}{4}
 \]
The slope of a line can be used to identify the coordinates of any point on the line. It can also be used to describe a rate of change. The rate of change describes how a quantity is changing over time.

Example 2 Use Rate of Change to Solve a Problem

RECREATION Between 1990 and 2000, annual sales of inline skating equipment increased by an average rate of $92.4 million per year. In 2000, the total sales were $1074.4 million. If sales increase at the same rate, what will the total sales be in 2008?

Let \((x_1, y_1) = (2000, 1074.4)\) and \(m = 92.4\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
92.4 = \frac{y_2 - 1074.4}{2008 - 2000}
\]

\[
92.4 = \frac{y_2 - 1074.4}{8}
\]

\[
739.2 = y_2 - 1074.4
\]

\[
1813.6 = y_2
\]

The coordinates of the point representing the sales for 2008 are (2008, 1813.6). Thus, the total sales in 2008 will be about $1813.6 million.

PARALLEL AND PERPENDICULAR LINES

Examine the graphs of lines \(\ell\), \(m\), and \(n\). Lines \(\ell\) and \(m\) are parallel, and \(n\) is perpendicular to \(\ell\) and \(m\).

Let's investigate the slopes of these lines.

- **slope of \(\ell\)**
 \[
m = \frac{2 - 5}{2 - (-3)} = \frac{-3}{5}
\]

- **slope of \(m\)**
 \[
m = \frac{1 - 4}{5 - 0} = \frac{-3}{5}
\]

- **slope of \(n\)**
 \[
m = \frac{2 - (-3)}{4 - 1} = \frac{5}{3}
\]

Because lines \(\ell\) and \(m\) are parallel, their slopes are the same. Line \(n\) is perpendicular to lines \(\ell\) and \(m\), and its slope is the opposite reciprocal of the slopes of \(\ell\) and \(m\); that is, \(-\frac{3}{5} \cdot \frac{5}{3} = -1\). These results suggest two important algebraic properties of parallel and perpendicular lines.
Two nonvertical lines have the same slope if and only if they are parallel.

Two nonvertical lines are perpendicular if and only if the product of their slopes is \(-1\).

Example 3 Determine Line Relationships

Determine whether \(\overline{AB}\) and \(\overline{CD}\) are parallel, perpendicular, or neither.

a. \(A(-2, -5), B(4, 7), C(0, 2), D(8, -2)\)

Find the slopes of \(\overline{AB}\) and \(\overline{CD}\).

\[
\text{slope of } \overline{AB} = \frac{7 - (-5)}{4 - (-2)} = \frac{12}{6} = 2
\]

\[
\text{slope of } \overline{CD} = \frac{-2 - 2}{8 - 0} = \frac{-4}{8} = -\frac{1}{2}
\]

The product of the slopes is \(2 \cdot (-\frac{1}{2}) = -1\). So, \(\overline{AB}\) is perpendicular to \(\overline{CD}\).

b. \(A(-8, -7), B(4, -4), C(-2, -5), D(1, 7)\)

\[
\text{slope of } \overline{AB} = \frac{-4 - (-7)}{4 - (-8)} = \frac{3}{12} = \frac{1}{4}
\]

\[
\text{slope of } \overline{CD} = \frac{7 - (-5)}{1 - (-2)} = \frac{12}{3} = 4
\]

The slopes are not the same, so \(\overline{AB}\) and \(\overline{CD}\) are not parallel. The product of the slopes is \(4 \cdot \frac{1}{4} = 1\). So, \(\overline{AB}\) and \(\overline{CD}\) are neither parallel nor perpendicular.

The relationships of the slopes of lines can be used to graph a line parallel or perpendicular to a given line.

Example 4 Use Slope to Graph a Line

Graph the line that contains \(P(-2, 1)\) and is perpendicular to \(\overline{JK}\) with \(J(-5, -4)\) and \(K(0, -2)\).

First, find the slope of \(\overline{JK}\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - (-4)}{0 - (-5)} = \frac{2}{5}
\]

The product of the slopes of two perpendicular lines is \(-1\).

Since \(\frac{2}{5} \cdot \frac{-5}{2} = -1\), the slope of the line perpendicular to \(\overline{JK}\) through \(P(-2, 1)\) is \(-\frac{5}{2}\).

Graph the line. Start at \((-2, 1)\). Move down 5 units and then move right 2 units. Label the point \(Q\). Draw \(\overline{PQ}\).
Check for Understanding

Concept Check
1. Describe what type of line is perpendicular to a vertical line. What type of line is parallel to a vertical line?

2. **FIND THE ERROR** Curtis and Lori calculated the slope of the line containing \(A(15, 4) \) and \(B(-6, -13) \). Who is correct? Explain your reasoning.

 - **Curtis**
 \[
 m = \frac{4 - (-15)}{15 - (-6)} = \frac{17}{21}
 \]
 - **Lori**
 \[
 m = \frac{4 - 13}{15 - 6} = -\frac{9}{11}
 \]

3. **OPEN ENDED** Give an example of a line whose slope is 0 and an example of a line whose slope is undefined.

Guided Practice
4. Determine the slope of the line that contains \(A(-4, 3) \) and \(B(-2, -1) \).

Find the slope of each line.
5. \(\ell \)
6. \(m \)
7. any line perpendicular to \(\ell \)

Determine whether \(\overline{GH} \) and \(\overline{RS} \) are parallel, perpendicular, or neither.
8. \(G(14, 13), H(-11, 0), R(-3, 7), S(-4, -5) \)
9. \(G(15, -9), H(9, -9), R(-4, -1), S(3, -1) \)

Graph the line that satisfies each condition.
10. slope = 2, contains \(P(1, 2) \)
11. contains \(A(6, 4) \), perpendicular to \(\overline{MN} \) with \(M(5, 0) \) and \(N(1, 2) \)

Application

MOUNTAIN BIKING For Exercises 12–14, use the following information.
A certain mountain bike trail has a section of trail with a grade of 8%.

12. What is the slope of the hill?
13. After riding on the trail, a biker is 120 meters below her original starting position. If her starting position is represented by the origin on a coordinate plane, what are the possible coordinates of her current position?
14. How far has she traveled down the hill? Round to the nearest meter.

Practice and Apply

Determine the slope of the line that contains the given points.
15. \(A(0, 2), B(7, 3) \)
16. \(C(-2, -3), D(-6, -5) \)
17. \(W(3, 2), X(4, -3) \)
18. \(Y(1, 7), Z(4, 3) \)

Determine whether \(\overline{PQ} \) and \(\overline{UV} \) are parallel, perpendicular, or neither.
19. \(P(-3, -2), Q(9, 1), U(3, 6), V(5, -2) \)
20. \(P(-4, 0), Q(0, 3), U(-4, -3), V(8, 6) \)
21. \(P(-10, 7), Q(2, 1), U(4, 0), V(6, 1) \)
22. \(P(-9, 2), Q(0, 1), U(-1, 8), V(-2, -1) \)
23. \(P(1, 1), Q(9, 8), U(-6, 1), V(2, 8) \)
24. \(P(5, -4), Q(10, 0), U(9, -8), V(5, -13) \)
Find the slope of each line.
25. \(\overline{AB} \)
26. \(\overline{PQ} \)
27. \(\overline{LM} \)
28. \(\overline{EF} \)
29. a line parallel to \(\overline{LM} \)
30. a line perpendicular to \(\overline{PQ} \)
31. a line perpendicular to \(\overline{EF} \)
32. a line parallel to \(\overline{AB} \)

Graph the line that satisfies each condition.
33. slope = -4, passes through \(P(-2, 1) \)
34. contains \(A(-1, -3) \), parallel to \(\overline{CD} \) with \(C(-1, 7) \) and \(D(5, 1) \)
35. contains \(M(4, 1) \), perpendicular to \(\overline{GH} \) with \(G(0, 3) \) and \(H(-3, 0) \)
36. slope = \(\frac{2}{5} \), contains \(J(-7, -1) \)
37. contains \(Q(-2, -4) \), parallel to \(\overline{KL} \) with \(K(2, 7) \) and \(L(2, -12) \)
38. contains \(W(6, 4) \), perpendicular to \(\overline{DE} \) with \(D(0, 2) \) and \(E(5, 0) \).

Populations For Exercises 39–41, refer to the graph.
40. If the median age continues to increase at the same rate, what will be the median age in 2010?
41. Suppose that after 2000, the median age increases by \(\frac{1}{3} \) of a year annually. In what year will the median age be 40.6?

Online Research Data Update Use the Internet or other resource to find the median age in the United States for years after 2000. Does the median age increase at the same rate as it did in years leading up to 2000? Visit www.geometryonline.com/data_update to learn more.

42. Determine the value of \(x \) so that a line containing \((6, 2) \) and \((x, -1) \) has a slope of \(-\frac{3}{7} \). Then graph the line.
43. Find the value of \(x \) so that the line containing \((4, 8) \) and \((2, -1) \) is perpendicular to the line containing \((x, 2) \) and \((-4, 5) \). Graph the lines.

Computers For Exercises 44–46, refer to the graph at the right.
44. What is the rate of change between 1998 and 2000?
45. If the percent of classrooms with Internet access increases at the same rate as it did between 1999 and 2000, in what year will 90% of classrooms have Internet access?
46. Will the graph continue to rise indefinitely? Explain.
47. **CRITICAL THINKING** The line containing the point \((5 + 2t, -3 + t) \) can be described by the equations \(x = 5 + 2t \) and \(y = -3 + t \). Write the slope-intercept form of the equation of this line.

48. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How is slope used in transportation?

Include the following in your answer:

- an explanation of why it is important to display the grade of a road, and
- an example of slope used in transportation other than roads.

49. Find the slope of a line perpendicular to the line containing \((-5, 1) \) and \((-3, -2) \).

A) \(-\frac{2}{3}\)
B) \(-\frac{3}{2}\)
C) \(\frac{2}{3}\)
D) \(\frac{3}{2}\)

50. **ALGEBRA** The winning sailboat completed a 24-mile race at an average speed of 9 miles per hour. The second-place boat finished with an average speed of 8 miles per hour. How many minutes longer than the winner did the second-place boat take to finish the race?

A) 20 min
B) 33 min
C) 60 min
D) 120 min

SOL/EOC Practice

Standardized Test Practice

Mixed Review

In the figure, \(QR \parallel TS, QT \parallel RS, \) and \(m\angle 1 = 131 \). Find the measure of each angle. *(Lesson 3-2)*

- 51. \(\angle 6 \)
- 52. \(\angle 7 \)
- 53. \(\angle 4 \)
- 54. \(\angle 2 \)
- 55. \(\angle 5 \)
- 56. \(\angle 8 \)

State the transversal that forms each pair of angles. Then identify the special name for each angle pair. *(Lesson 3-1)*

- 57. \(\angle 1 \) and \(\angle 14 \)
- 58. \(\angle 2 \) and \(\angle 10 \)
- 59. \(\angle 3 \) and \(\angle 6 \)
- 60. \(\angle 14 \) and \(\angle 15 \)
- 61. \(\angle 7 \) and \(\angle 12 \)
- 62. \(\angle 9 \) and \(\angle 11 \)

Make a conjecture based on the given information. Draw a figure to illustrate your conjecture. *(Lesson 2-1)*

- 63. Points \(H, I, \) and \(J \) are each located on different sides of a triangle.
- 64. Collinear points \(X, Y, \) and \(Z; Z \) is between \(X \) and \(Y \).
- 65. \(R(3, -4), S(-2, -4), \) and \(T(0, -4) \)

Classify each angle as right, acute, or obtuse. *(Lesson 1-4)*

- 66. \(\angle ABD \)
- 67. \(\angle DBF \)
- 68. \(\angle CBE \)
- 69. \(\angle ABF \)

Maintain Your Skills

PREREQUISITE SKILL Solve each equation for \(y \).

(To review solving equations, see pages 737 and 738.)

- 70. \(2x + y = 7 \)
- 71. \(2x + 4y = -5 \)
- 72. \(5x - 2y + 4 = 0 \)
WRITE EQUATIONS OF LINES You may remember from algebra that an equation of a line can be written given any of the following:

- the slope and the \(y \)-intercept,
- the slope and the coordinates of a point on the line, or
- the coordinates of two points on the line.

The graph of \(C = 0.07t + 19.95 \) has a slope of 0.07, and it intersects the \(y \)-axis at 19.95. These two values can be used to write an equation of the line. The slope-intercept form of a linear equation is \(y = mx + b \), where \(m \) is the slope of the line and \(b \) is the \(y \)-intercept.

\[
\begin{align*}
\text{slope} & = 0.07 \\
y & = mx + b \\
C & = 0.07t + 19.95 \\
\text{y-intercept} & = 19.95
\end{align*}
\]

Example 1 **Slope and \(y \)-Intercept**

Write an equation in slope-intercept form of the line with slope of \(-4\) and \(y \)-intercept of 1.

\[
y = mx + b \\
y = -4x + 1 \\
m = -4, b = 1
\]

The slope-intercept form of the equation of the line is \(y = -4x + 1 \).

Another method used to write an equation of a line is the point-slope form of a linear equation. The point-slope form is \(y - y_1 = m(x - x_1) \), where \((x_1, y_1)\) are the coordinates of any point on the line and \(m \) is the slope of the line.

\[
\begin{align*}
given \ point \ (x_1, y_1) & \\
\downarrow & \\
\downarrow & \\
y - y_1 & = m(x - x_1) \\
\text{slope} &
\end{align*}
\]
Both the slope-intercept form and the point-slope form require the slope of a line in order to write an equation. There are occasions when the slope of a line is not given. In cases such as these, use two points on the line to calculate the slope. Then use the point-slope form to write an equation.

Example 3 Two Points

Write an equation in slope-intercept form for line \(\ell\).

Find the slope of \(\ell\) by using \(A(-1, 6)\) and \(B(3, 2)\).

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{Slope formula}
\]

\[
= \frac{2 - 6}{3 - (-1)} \quad x_1 = -1, x_2 = 3, y_1 = 6, y_2 = 2
\]

\[
= \frac{-4}{4} \quad \text{or} \quad -1 \quad \text{Simplify.}
\]

Now use the point-slope form and either point to write an equation.

Using Point \(A\):

\[
y - y_1 = m(x - x_1) \quad \text{Point-slope form}
\]

\[
y - 6 = -1[x - (-1)] \quad m = -1, (x_1, y_1) = (-1, 6)
\]

\[
y - 6 = -1(x + 1) \quad \text{Simplify.}
\]

\[
y - 6 = -x - 1
\]

\[
y = -x + 5 \quad \text{Add 6 to each side.}
\]

Using Point \(B\):

\[
y - y_1 = m(x - x_1) \quad \text{Point-slope form}
\]

\[
y - 2 = -1(x - 3) \quad m = -1, (x_1, y_1) = (3, 2)
\]

\[
y - 2 = -x + 3 \quad \text{Distributive Property}
\]

\[
y = -x + 5 \quad \text{Add 2 to each side.}
\]

Example 4 One Point and an Equation

Write an equation in slope-intercept form for a line containing \((2, 0)\) that is perpendicular to the line \(y = -x + 5\).

Since the slope of the line \(y = -x + 5\) is \(-1\), the slope of a line perpendicular to it is 1.

\[
y - y_1 = m(x - x_1) \quad \text{Point-slope form}
\]

\[
y - 0 = 1(x - 2) \quad m = 1, (x_1, y_1) = (2, 0)
\]

\[
y = x - 2 \quad \text{Distributive Property}
\]
WRITE EQUATIONS TO SOLVE PROBLEMS Many real-world situations can be modeled using linear equations. In many business applications, the slope represents a rate.

Example 5 Write Linear Equations

CELL PHONE COSTS Martina’s current cellular phone plan charges $14.95 per month and $0.10 per minute of air time.

a. Write an equation to represent the total monthly cost C for t minutes of air time.

For each minute of air time, the cost increases $0.10. So, the rate of change, or slope, is 0.10. The y-intercept is located where 0 minutes of air time are used, or $14.95.

\[C = mt + b \] Slope-intercept form
\[C = 0.10t + 14.95 \quad m = 0.10, b = 14.95 \]

The total monthly cost can be represented by the equation \[C = 0.10t + 14.95. \]

b. Compare her current plan to the plan presented at the beginning of the lesson. If she uses an average of 40 minutes of air time each month, which plan offers the better rate?

Evaluate each equation for \(t = 40 \).

Current plan: \[C = 0.10t + 14.95 \]
\[= 0.10(40) + 14.95 \quad t = 40 \]
\[= 18.95 \quad \text{Simplify.} \]

Alternate plan: \[C = 0.07t + 19.95 \]
\[= 0.07(40) + 19.95 \quad t = 40 \]
\[= 22.75 \quad \text{Simplify.} \]

Given her average usage, Martina’s current plan offers the better rate.

Check for Understanding

Concept Check 1. Explain how you would write an equation of a line whose slope is \(-\frac{2}{5}\) that contains \((-2, 8)\).

2. Write equations in slope-intercept form for two lines that contain \((-1, -5)\).

3. OPEN ENDED Graph a line that is not horizontal or vertical on the coordinate plane. Write the equation of the line.

Guided Practice Write an equation in slope-intercept form of the line having the given slope and y-intercept.

4. \(m = \frac{1}{2} \)
 y-intercept: 4

5. \(m = -\frac{3}{5} \)
 intercept at \((0, -2)\)

6. \(m = 3 \)

Write an equation in point-slope form of the line having the given slope that contains the given point.

7. \(m = \frac{3}{2}, (4, -1) \)

8. \(m = 3, (7, 5) \)

9. \(m = 1.25, (20, 137.5) \)
Refer to the figure at the right. Write an equation in slope-intercept form for each line.
10. \(\ell \)
11. \(k \)
12. the line parallel to \(\ell \) that contains (4, 4)

Application
INTERNET For Exercises 13–14, use the following information.
Justin’s current Internet service provider charges a flat rate of $39.95 per month for unlimited access. Another provider charges $4.95 per month for access and $0.95 for each hour of connection.

13. Write an equation to represent the total monthly cost for each plan.
14. If Justin is online an average of 60 hours per month, should he keep his current plan, or change to the other plan? Explain.

Practice and Apply

Write an equation in slope-intercept form of the line having the given slope and \(y \)-intercept.
15. \(m = \frac{1}{6}, y \)-intercept: \(-4\)
16. \(m = \frac{2}{3}, (0, 8) \)
17. \(m = \frac{5}{8}, (0, -6) \)
18. \(m = \frac{2}{9}, y \)-intercept: \(\frac{1}{3}\)
19. \(m = -1, b = -3 \)
20. \(m = -\frac{11}{12}, b = 1 \)

Write an equation in point-slope form of the line having the given slope that contains the given point.
21. \(m = 2, (3, 1) \)
22. \(m = -5, (4, 7) \)
23. \(m = -\frac{4}{5}, (-12, -5) \)
24. \(m = \frac{1}{16}, (3, 11) \)
25. \(m = 0.48, (5, 17.12) \)
26. \(m = -1.3, (10, 87.5) \)

Write an equation in slope-intercept form for each line.
27. \(k \)
28. \(\ell \)
29. \(m \)
30. \(n \)
31. perpendicular to line \(\ell \), contains (–1, 6)
32. parallel to line \(k \), contains (7, 0)
33. parallel to line \(n \), contains (0, 0)
34. perpendicular to line \(m \), contains (–3, –3)

Write an equation in slope-intercept form for the line that satisfies the given conditions.
35. \(m = -3, y \)-intercept = 5
36. \(m = 0, y \)-intercept = 6
37. \(x \)-intercept = 5, \(y \)-intercept = 3
38. contains (4, –1) and (–2, –1)
39. contains (–5, –3) and (10, –6)
40. \(x \)-intercept = 5, \(y \)-intercept = –1
41. contains (–6, 8) and (–6, –4)
42. contains (–4, –1) and (–8, –5)
43. Write an equation of the line that contains (7, –2) and is parallel to \(2x - 5y = 8 \).
44. What is an equation of the line that is perpendicular to \(2y + 2 = -\frac{7}{4}(x - 7) \) and contains (–2, –3)?
45. **JOBS** Ann MacDonald is a salesperson at a discount appliance store. She earns $50 for each appliance that she sells plus a 5% commission on the price of the appliance. Write an equation that represents what she earned in a week in which she sold 15 appliances.

BUSINESS For Exercises 46–49, use the following information. The Rainbow Paint Company sells an average of 750 gallons of paint each day.

46. How many gallons of paint will they sell in x days?
47. The store has 10,800 gallons of paint in stock. Write an equation in slope-intercept form that describes how many gallons of paint will be on hand after x days if no new stock is added.
48. Draw a graph that represents the number of gallons of paint on hand at any given time.
49. If it takes 4 days to receive a shipment of paint from the manufacturer after it is ordered, when should the store manager order more paint so that the store does not run out?

MAPS For Exercises 50 and 51, use the following information.

Suppose a map of Texas is placed on a coordinate plane with the western tip at the origin. Jeff Davis, Pecos, and Brewster counties meet at $(130, -70)$, and Jeff Davis, Reeves, and Pecos counties meet at $(120, -60)$.

50. Write an equation in slope-intercept form that models the county line between Jeff Davis and Reeves counties.
51. The line separating Reeves and Pecos counties runs perpendicular to the Jeff Davis/Reeves county line. Write an equation in slope-intercept form of the line that contains the Reeves/Pecos county line.

52. **CRITICAL THINKING** The point-slope form of an equation of a line can be rewritten as $y = m(x - x_1) + y_1$. Describe how the graph of $y = m(x - x_1) + y_1$ is related to the graph of $y = mx$.

53. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How can the equation of a line describe cellular telephone service?

Include the following in your answer:
- an explanation of how the fee for air time affects the equation, and
- a description of how you can use equations to compare various plans.

54. What is the slope of a line perpendicular to the line represented by $2x - 8y = 16$?

 A. -4
 B. -2
 C. $\frac{-1}{4}$
 D. $\frac{1}{4}$

55. **ALGEBRA** What are all of the values of y for which $y^2 < 1$?

 A. $y < -1$
 B. $-1 < y < 1$
 C. $y > -1$
 D. $y < 1$

Maps

Global coordinates are usually stated latitude, the angular distance north or south of the equator, and longitude, the angular distance east or west of the prime meridian.

Source: www.worldatlas.com
Practice Quiz 2

Determine whether \overline{AB} and \overline{CD} are parallel, perpendicular, or neither. (Lesson 3-3)
1. $A(3, -1), B(6, 1), C(-2, -2), D(2, 4)$
2. $A(-3, -11), B(3, 13), C(0, -6), D(8, -8)$

For Exercises 3–8, refer to the graph at the right. Find the slope of each line. (Lesson 3-3)
3. p
4. a line parallel to q
5. a line perpendicular to r

Write an equation in slope-intercept form for each line. (Lesson 3-4)
6. q
7. parallel to r, contains $(-1, 4)$
8. perpendicular to p, contains $(0, 0)$

Write an equation in point-slope form for the line that satisfies the given condition. (Lesson 3-4)
9. parallel to $y = -\frac{1}{4}x + 2$, contains $(5, -8)$
10. perpendicular to $y = -3$, contains $(-4, -4)$
Proving Lines Parallel

What You’ll Learn

- Recognize angle conditions that occur with parallel lines.
- Prove that two lines are parallel based on given angle relationships.

How do you know that the sides of a parking space are parallel?

Have you ever been in a tall building and looked down at a parking lot? The parking lot is full of line segments that appear to be parallel. The workers who paint these lines must be certain that they are parallel.

IDENTIFY PARALLEL LINES When each stripe of a parking space intersects the center line, the angles formed are corresponding angles. If the lines are parallel, we know that the corresponding angles are congruent. Conversely, if the corresponding angles are congruent, then the lines must be parallel.

Postulate 3.4

If two lines in a plane are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

Abbreviation: If corr. \(\angle \) are \(\cong \), then lines are \(\parallel \).

Examples: If \(\angle 1 \equiv \angle 5 \), \(\angle 2 \equiv \angle 6 \), \(\angle 3 \equiv \angle 7 \), or \(\angle 4 \equiv \angle 8 \), then \(m \parallel n \).

Postulate 3.4 justifies the construction of parallel lines.

Construction

Parallel Line Through a Point Not on Line

1. Use a straightedge to draw a line. Label two points on the line as \(M \) and \(N \). Draw a point \(P \) that is not on \(MN \). Draw \(PM \).
2. Copy \(\angle PMN \) so that \(P \) is the vertex of the new angle. Label the intersection points \(Q \) and \(R \).
3. Draw \(PQ \). Because \(\angle RPQ \equiv \angle PMN \) by construction and they are corresponding angles, \(PQ \parallel MN \).
The construction establishes that there is at least one line through \(P \) that is parallel to \(MN \). In 1795, Scottish physicist and mathematician John Playfair provided the modern version of Euclid’s Parallel Postulate, which states there is exactly one line parallel to a line through a given point not on the line.

Postulate 3.5

Parallel Postulate
If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

Parallel lines with a transversal create many pairs of congruent angles. Conversely, those pairs of congruent angles can determine whether a pair of lines is parallel.

Key Concept

Theorems

| 3.5 | If two lines in a plane are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel.
Abbreviation: If alt. ext. \(\triangle \) are \(\cong \), then lines are \(\parallel \). |
|---|---|
| 3.6 | If two lines in a plane are cut by a transversal so that a pair of consecutive interior angles is supplementary, then the lines are parallel.
Abbreviation: If cons. int. \(\triangle \) are suppl., then lines are \(\parallel \). |
| 3.7 | If two lines in a plane are cut by a transversal so that a pair of alternate interior angles is congruent, then the lines are parallel.
Abbreviation: If alt. int. \(\triangle \) are \(\cong \), then lines are \(\parallel \). |
| 3.8 | In a plane, if two lines are perpendicular to the same line, then they are parallel.
Abbreviation: If 2 lines are \(\perp \) to the same line, then lines are \(\parallel \). |

Proving Lines Parallel

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (\angle 1 \cong \angle 8) or if (\angle 2 \cong \angle 7), then (m \parallel n).</td>
</tr>
<tr>
<td>If (m \angle 3 + m \angle 5 = 180) or if (m \angle 4 + m \angle 6 = 180), then (m \parallel n).</td>
</tr>
<tr>
<td>If (\angle 3 \cong \angle 6) or if (\angle 4 \cong \angle 5), then (m \parallel n).</td>
</tr>
<tr>
<td>If (\ell \perp m) and (\ell \perp n), then (m \parallel n).</td>
</tr>
</tbody>
</table>

Example 1

Identify Parallel Lines

In the figure, \(BG \) bisects \(\angle ABH \). Determine which lines, if any, are parallel.

- The sum of the angle measures in a triangle must be 180, so \(m \angle BDF = 180 - (45 + 65) \) or 70.
- Since \(\angle BDF \) and \(\angle BGH \) have the same measure, they are congruent.
- Congruent corresponding angles indicate parallel lines. So, \(\overline{DF} \parallel \overline{GH} \).
- \(\angle ABD \cong \angle DBF \), because \(BG \) bisects \(\angle ABH \). So, \(m \angle ABD = 45 \).
- \(\angle ABD \) and \(\angle DBF \) are alternate interior angles, but they have different measures so they are not congruent.
- Thus, \(\overline{AB} \) is not parallel to \(\overline{DF} \) or \(\overline{GH} \).
Angle relationships can be used to solve problems involving unknown values.

Example 2 Solve Problems with Parallel Lines

ALGEBRA Find \(x\) and \(\angle RSU\) so that \(m \parallel n\).

Explore From the figure, you know that
\[m \angle RSU = 8x + 4\] and
\[m \angle STV = 9x - 11.\] You also know that \(\angle RSU\) and \(\angle STV\) are corresponding angles.

Plan For line \(m\) to be parallel to line \(n\), the corresponding angles must be congruent. So,
\[m \angle RSU = m \angle STV.\] Substitute the given angle measures into this equation and solve for \(x\). Once you know the value of \(x\), use substitution to find \(m \angle RSU\).

Solve
\[
\begin{align*}
8x + 4 &= 9x - 11 & \text{Corresponding angles} \\
4 &= x - 11 & \text{Substitution} \\
15 &= x & \text{Add 11 to each side.}
\end{align*}
\]

Now use the value of \(x\) to find \(m \angle RSU\).
\[
\begin{align*}
m \angle RSU &= 8x + 4 & \text{Original equation} \\
&= 8(15) + 4 & x = 15 \\
&= 124 & \text{Simplify.}
\end{align*}
\]

Examine Verify the angle measure by using the value of \(x\) to find \(m \angle STV\). That is,
\[9x - 11 = 9(15) - 11\] or 124. Since \(m \angle RSU = m \angle STV\),
\[\angle RSU \equiv \angle STV\] and \(m \parallel n\).

PROVE LINES PARALLEL The angle pair relationships formed by a transversal can be used to prove that two lines are parallel.

Example 3 Prove Lines Parallel

Given: \(r \parallel s\) \\
\(\angle 5 \equiv \angle 6\)

Prove: \(\ell \parallel m\)

Proof:

Statements

1. \(r \parallel s, \angle 5 \equiv \angle 6\)
2. \(\angle 4 \text{ and } \angle 5\) are supplementary.
3. \(m \angle 4 + m \angle 5 = 180\)
4. \(m \angle 5 = m \angle 6\)
5. \(m \angle 4 + m \angle 6 = 180\)
6. \(\angle 4 \text{ and } \angle 6\) are supplementary.
7. \(\ell \parallel m\)

Reasons

1. Given
2. Consecutive Interior Angle Theorem
3. Definition of supplementary angles
4. Definition of congruent angles
5. Substitution Property (=)
6. Definition of supplementary angles
7. If cons. int. \(\angle\)s are suppl., then lines are \(\parallel\).
In Lesson 3-3, you learned that parallel lines have the same slope. You can use the slopes of lines to prove that lines are parallel.

Example 4 Slope and Parallel Lines

Determine whether \(g \parallel f \).

slope of \(f \): \(m = \frac{4 - 0}{6 - 3} \) or \(\frac{4}{3} \)

slope of \(g \): \(m = \frac{4 - 0}{0 - (-3)} \) or \(\frac{4}{3} \)

Since the slopes are the same, \(g \parallel f \).

Check for Understanding

Concept Check

1. **Summarize** five different methods to prove that two lines are parallel.

2. **Find a counterexample** for the following statement.

 If lines \(\ell \) and \(m \) are cut by transversal \(t \) so that consecutive interior angles are congruent, then lines \(\ell \) and \(m \) are parallel and \(t \) is perpendicular to both lines.

3. **OPEN ENDED** Describe two situations in your own life in which you encounter parallel lines. How could you verify that the lines are parallel?

Guided Practice

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

4. \(\angle 16 \cong \angle 3 \)

5. \(\angle 4 \cong \angle 13 \)

6. \(m\angle 14 + m\angle 10 = 180 \)

7. \(\angle 1 \cong \angle 7 \)

Find \(x \) so that \(\ell \parallel m \).

8. \(5x + 90 = (14x + 9) \)

9. \(9x - 5 = 7x + 3 \)

10. **PROOF** Write a two-column proof of Theorem 3.5.

11. Determine whether \(p \parallel q \).

Application

12. **PHYSICS** The Hubble Telescope gathers parallel light rays and directs them to a central focal point. Use a protractor to measure several of the angles shown in the diagram. Are the lines parallel? Explain how you know.
Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

13. $\angle 2 \cong \angle 8$
14. $\angle 9 \cong \angle 16$
15. $\angle 2 \cong \angle 10$
16. $\angle 6 \cong \angle 15$

17. $\angle AEF \cong \angle BFG$
18. $\angle EAB \cong \angle DBC$
19. $\angle EFB \cong \angle CBF$
20. $m\angle GFD + m\angle CBD = 180$

21. $\angle HLK \cong \angle JML$
22. $\angle PLQ \cong \angle MQL$
23. $m\angle MLP + \angle RPL = 180$
24. $\overline{HS} \perp \overline{PR}, \overline{JT} \perp \overline{PR}$

25. **PROOF** Copy and complete the proof of Theorem 3.8.

Given: $\ell \perp t$
$m \perp t$

Prove: $\ell \parallel m$

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\ell \perp t, m \perp t$</td>
<td>1. ?</td>
</tr>
<tr>
<td>2. $\angle 1$ and $\angle 2$ are right angles.</td>
<td>2. ?</td>
</tr>
<tr>
<td>3. $\angle 1 \cong \angle 2$</td>
<td>3. ?</td>
</tr>
<tr>
<td>4. $\ell \parallel m$</td>
<td>4. ?</td>
</tr>
</tbody>
</table>

Find x so that $\ell \parallel m$.

26. ℓ
\[(9x - 4)^\circ \]
\[140^\circ \]
\[m \]
27. ℓ
\[(8x + 4)^\circ \]
\[(9x - 11)^\circ \]
\[m \]
28. ℓ
\[(7x - 1)^\circ \]
\[m \]
29. ℓ
\[(4 - 5x)^\circ \]
\[(7x + 100)^\circ \]
\[m \]
30. ℓ
\[(14x + 9)^\circ \]
\[(5x + 90)^\circ \]
\[m \]
31. ℓ
\[(178 - 3x)^\circ \]
\[(7x - 38)^\circ \]
\[m \]

32. **PROOF** Write a two-column proof of Theorem 3.6.
33. **PROOF** Write a paragraph proof of Theorem 3.7.
Write a two-column proof for each of the following.

34. Given: \(\angle 2 \equiv \angle 1 \)
 \(\angle 1 \equiv \angle 3 \)
 Prove: \(ST \parallel UV \)

35. Given: \(\overline{AD} \perp \overline{CD} \)
 \(\angle 1 \equiv \angle 2 \)
 Prove: \(BC \perp CD \)

36. Given: \(\overline{JM} \parallel \overline{KN} \)
 \(\angle 1 \equiv \angle 2 \)
 \(\angle 3 \equiv \angle 4 \)
 Prove: \(\overline{KM} \parallel \overline{LN} \)

37. Given: \(\angle RSP \equiv \angle PQR \)
 \(\angle QRS \) and \(\angle PQR \) are supplementary.
 Prove: \(\overline{PS} \parallel \overline{QR} \)

Determine whether each pair of lines is parallel. Explain why or why not.

38.

39.

40. **HOME IMPROVEMENT** To build a fence, Jim positioned the fence posts and then placed a 2 \(\times \) 4 board at an angle between the fence posts. As he placed each picket, he measured the angle that the picket made with the 2 \(\times \) 4. Why does this ensure that the pickets will be parallel?

41. **FOOTBALL** When striping the practice football field, Mr. Hawkinson first painted the sidelines. Next he marked off 10-yard increments on one sideline. He then constructed lines perpendicular to the sidelines at each 10-yard mark. Why does this guarantee that the 10-yard lines will be parallel?

42. **CRITICAL THINKING** When Adeel was working on an art project, he drew a four-sided figure with two pairs of opposite parallel sides. He noticed some patterns relating to the angles in the figure. List as many patterns as you can about a 4-sided figure with two pairs of opposite parallel sides.

43. **RESEARCH** Use the Internet or other resource to find mathematicians like John Playfair who discovered new concepts and proved new theorems related to parallel lines. Briefly describe their discoveries.
44. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How do you know that the sides of a parking space are parallel?

Include the following in your answer:

- a comparison of the angles at which the lines forming the edges of a parking space strike the centerline, and
- a description of the type of parking spaces that form congruent consecutive interior angles.

45. In the figure, line ℓ is parallel to line m. Line n intersects both ℓ and m. Which of the following lists includes all of the angles that are supplementary to $\angle 1$?

A) angles 2, 3, and 4
B) angles 2, 3, 6, and 7
C) angles 4, 5, and 8
D) angles 3, 4, 7, and 8

46. **ALGEBRA** Kendra has at least one quarter, one dime, one nickel, and one penny. If she has three times as many pennies as nickels, the same number of nickels as dimes, and twice as many dimes as quarters, then what is the least amount of money she could have?

(A) $0.41
(B) $0.48
(C) $0.58
(D) $0.61

Maintain Your Skills

Mixed Review

Write an equation in slope-intercept form for the line that satisfies the given conditions. **(Lesson 3-4)**

47. $m = 0.3$, y-intercept is -6
48. $m = \frac{1}{3}$, contains $(-3, -15)$
49. contains $(5, 7)$ and $(-3, 11)$
50. perpendicular to $y = \frac{1}{2}x - 4$, contains $(4, 1)$

Find the slope of each line. **(Lesson 3-3)**

51. \overline{BD}
52. \overline{CD}
53. \overline{AB}
54. \overline{EO}
55. any line parallel to \overline{DE}
56. any line perpendicular to \overline{BD}

Construct a truth table for each compound statement. **(Lesson 2-2)**

57. p and q
58. p or $\sim q$
59. $\sim p \land q$
60. $\sim p \land \sim q$

61. **CARPENTRY** A carpenter must cut two pieces of wood at angles so that they fit together to form the corner of a picture frame. What type of angles must he use to make sure that a corner results? **(Lesson 1-5)**

PREREQUISITE SKILL Use the Distance Formula to find the distance between each pair of points. **(To review the Distance Formula, see Lesson 1-4)**

62. $(2, 7), (7, 19)$
63. $(8, 0), (-1, 2)$
64. $(-6, -4), (-8, -2)$
Points of Intersection

You can use a TI-83 Plus graphing calculator to determine the points of intersection of a transversal and two parallel lines.

Example

Parallel lines ℓ and m are cut by a transversal t. The equations of ℓ, m, and t are $y = \frac{1}{2}x - 4$, $y = \frac{1}{2}x + 6$, and $y = -2x + 1$, respectively. Use a graphing calculator to determine the points of intersection of t with ℓ and m.

Step 1 Enter the equations in the Y= list and graph in the standard viewing window.

KEystrokes: $Y_1 = \frac{1}{2} - 4$ ENTER $Y_2 = \frac{1}{2} + 6$ ENTER $Y_3 = -2x + 1$ ENTER $2nd$ [CALC] 5 ENTER \n
$[-10, 10]$ scl: 1 by $[-10, 10]$ scl: 1

Lines ℓ and t intersect at $(2, -3)$.

Step 2 Use the CALC menu to find the points of intersection.

- Find the intersection of ℓ and t.

KEystrokes: $2nd$ [CALC] 5 ENTER \n
Lines ℓ and t intersect at $(2, -3)$.

- Find the intersection of m and t.

KEystrokes: $2nd$ [CALC] 5 ENTER \n
Lines m and t intersect at $(-2, 5)$.

Exercises

Parallel lines a and b are cut by a transversal t. Use a graphing calculator to determine the points of intersection of t with a and b. Round to the nearest tenth.

1. $a: y = 2x - 10$
 $b: y = 2x - 2$
 $t: y = -\frac{1}{2}x + 4$

2. $a: y = -x - 3$
 $b: y = -x + 5$
 $t: y = x - 6$

3. $a: y = 6$
 $b: y = 0$
 $t: x = -2$

4. $a: y = -3x + 1$
 $b: y = -3x - 3$
 $t: y = \frac{1}{3}x + 8$

5. $a: y = \frac{4}{5}x - 2$
 $b: y = \frac{4}{5}x - 7$
 $t: y = -\frac{5}{4}x$

6. $a: y = -\frac{1}{6}x + \frac{2}{3}$
 $b: y = -\frac{1}{6}x + \frac{5}{12}$
 $t: y = 6x + 2$
Lesson 3-6 Perpendiculars and Distance

What You’ll Learn

• Find the distance between a point and a line.
• Find the distance between parallel lines.

Vocabulary

• equidistant

How does the distance between parallel lines relate to hanging new shelves?

When installing shelf brackets, it is important that the vertical bracing be parallel in order for the shelves to line up. One technique is to install the first brace and then use a carpenter’s square to measure and mark two or more points the same distance from the first brace. You can then align the second brace with those marks.

DISTANCE FROM A POINT TO A LINE In Lesson 3-5, you learned that if two lines are perpendicular to the same line, then they are parallel. The carpenter’s square is used to construct a line perpendicular to each pair of shelves. The space between each pair of shelves is measured along the perpendicular segment. This is to ensure that the shelves are parallel. This is an example of using lines and perpendicular segments to determine distance. The shortest segment from a point to a line is the perpendicular segment from the point to the line.

Key Concept Distance Between a Point and a Line

• Words The distance from a line to a point not on the line is the length of the segment perpendicular to the line from the point.

• Model

Study Tip Measuring the Shortest Distance

You can use tools like the corner of a piece of paper or your book to help draw a right angle.

Example 1 Distance from a Point to a Line

Draw the segment that represents the distance from P to AB.

Since the distance from a line to a point not on the line is the length of the segment perpendicular to the line from the point, extend AB and draw PQ so that $PQ \perp AB$.

When you draw a perpendicular segment from a point to a line, you can guarantee that it is perpendicular by using the construction of a line perpendicular to a line through a point not on that line.
Example 2 Construct a Perpendicular Segment

COORDINATE GEOMETRY Line \(\ell \) contains points \((-6, -9)\) and \((0, -1)\). Construct a line perpendicular to line \(\ell \) through \(P(-7, -2)\) not on \(\ell \). Then find the distance from \(P\) to \(\ell \).

1. Graph line \(\ell \) and point \(P\). Place the compass point at point \(P\). Make the setting wide enough so that when an arc is drawn, it intersects \(\ell \) in two places. Label these points of intersection \(A\) and \(B\).

2. Put the compass at point \(A\) and draw an arc below line \(\ell \). (Hint: Any compass setting greater than \(\frac{1}{2}AB\) will work.)

3. Using the same compass setting, put the compass at point \(B\) and draw an arc to intersect the one drawn in step 2. Label the point of intersection \(Q\).

4. Draw \(PQ\). \(PQ\) \(\perp \ell\). Label point \(R\) at the intersection of \(PQ\) and \(\ell \). Use the slopes of \(PQ\) and \(\ell \) to verify that the lines are perpendicular.

The segment constructed from point \(P(-7, -2)\) perpendicular to the line \(\ell \), appears to intersect line \(\ell \) at \(R(-3, -5)\). Use the Distance Formula to find the distance between point \(P\) and line \(\ell \).

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
= \sqrt{(-7 - (-3))^2 + (-2 - (-5))^2}
= \sqrt{25} \text{ or } 5
\]

The distance between \(P\) and \(\ell \) is 5 units.

DISTANCE BETWEEN PARALLEL LINES

Two lines in a plane are parallel if they are everywhere **equidistant**. Equidistant means that the distance between two lines measured along a perpendicular line to the lines is always the same. The distance between parallel lines is the length of the perpendicular segment with endpoints that lie on each of the two lines.
Theorem 3.9

In a plane, if two lines are equidistant from a third line, then the two lines are parallel to each other.

Example 3 Distance Between Lines

Find the distance between the parallel lines \(\ell \) and \(m \) whose equations are \(y = -\frac{1}{3}x - 3 \) and \(y = -\frac{1}{3}x + \frac{1}{3} \), respectively.

You will need to solve a system of equations to find the endpoints of a segment that is perpendicular to both \(\ell \) and \(m \). The slope of lines \(\ell \) and \(m \) is \(-\frac{1}{3} \).

- First, write an equation of a line \(p \) perpendicular to \(\ell \) and \(m \). The slope of \(p \) is the opposite reciprocal of \(-\frac{1}{3} \), or 3. Use the \(y \)-intercept of line \(\ell \), \((0, -3)\), as one of the endpoints of the perpendicular segment.

 \[
 y - (-3) = 3(x - 0) \\
 y + 3 = 3x \\
 y = 3x - 3
 \]

- Next, use a system of equations to determine the point of intersection of line \(m \) and \(p \).

\[
\begin{align*}
 m: & \quad y = -\frac{1}{3}x + \frac{1}{3} \\
 p: & \quad y = 3x - 3
\end{align*}
\]

\[
\begin{align*}
 -\frac{1}{3}x + \frac{1}{3} &= 3x - 3 \\
 -\frac{1}{3}x - 3x &= -3 - \frac{1}{3} \\
 -\frac{10}{3}x &= -\frac{10}{3} \\
 x &= 1 \\
 y &= 3(1) - 3 \\
 y &= 0
\end{align*}
\]

The point of intersection is \((1, 0)\).

- Then, use the Distance Formula to determine the distance between \((0, -3)\) and \((1, 0)\).

\[
\begin{align*}
 d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\
 &= \sqrt{(0 - 1)^2 + (-3 - 0)^2} \\
 &= \sqrt{10}
\end{align*}
\]

The distance between the lines is \(\sqrt{10} \) or about 3.16 units.
Check for Understanding

Concept Check

1. **Explain** how to construct a segment between two parallel lines to represent the distance between them.

2. **OPEN ENDED** Make up a problem involving an everyday situation in which you need to find the distance between a point and a line or the distance between two lines. For example, find the shortest path from the patio of a house to a garden to minimize the length of a walkway and material used in its construction.

3. **Compare and contrast** three different methods that you can use to show that two lines in a plane are parallel.

Guided Practice

Copy each figure. Draw the segment that represents the distance indicated.

4. L to KN

5. D to AE

6. **COORDINATE GEOMETRY** Line $ℓ$ contains points $(0, 0)$ and $(2, 4)$. Draw line $ℓ$. Construct a line perpendicular to $ℓ$ through $A(2, -6)$. Then find the distance from A to $ℓ$.

Find the distance between each pair of parallel lines.

7. $y = \frac{3}{4}x - 1$
 $y = \frac{3}{4}x + \frac{1}{8}$

8. $x + 3y = 6$
 $x + 3y = -14$

9. Graph the line whose equation is $y = -\frac{3}{4}x + \frac{1}{4}$. Construct a perpendicular segment through $P(2, 5)$. Then find the distance from P to the line.

Application

10. **UTILITIES** Housing developers often locate the shortest distance from a house to the water main so that a minimum of pipe is required to connect the house to the water supply. Copy the diagram, and draw a possible location for the pipe.

Practice and Apply

Copy each figure. Draw the segment that represents the distance indicated.

11. C to \overline{AD}

12. K to \overline{JL}

13. Q to \overline{RS}
Copy each figure. Draw the segment that represents the distance indicated.

14. Y to WX
15. G to HJ
16. W to UV

COORDINATE GEOMETRY
Construct a line perpendicular to \(\ell \) through \(P \). Then find the distance from \(P \) to \(\ell \).

17. Line \(\ell \) contains points \((-3, 0) \) and \((3, 0) \). Point \(P \) has coordinates \((4, 3) \).
18. Line \(\ell \) contains points \((0, -2) \) and \((1, 3) \). Point \(P \) has coordinates \((-4, 4) \).

Find the distance between each pair of parallel lines.

19. \(y = -3 \)
20. \(x = 4 \)
21. \(y = 2x + 2 \)
22. \(y = 4x \)
23. \(y = 2x - 3 \)
24. \(y = -\frac{3}{4}x - 1 \)

Graph each line. Construct a perpendicular segment through the given point. Then find the distance from the point to the line.

25. \(y = 5 \), \((-2, 4) \)
26. \(y = 2x + 2 \), \((-1, -5) \)
27. \(2x - 3y = -9 \), \((2, 0) \)

28. PROOF Write a paragraph proof of Theorem 3.9.

29. INTERIOR DESIGN Theresa is installing a curtain rod on the wall above the window. In order to ensure that the rod is parallel to the ceiling, she measures and marks 9 inches below the ceiling in several places. If she installs the rod at these markings centered over the window, how does she know the curtain rod will be parallel to the ceiling?

30. CONSTRUCTION When framing a wall during a construction project, carpenters often use a plumb line. A plumb line is a string with a weight called a plumb bob attached on one end. The plumb line is suspended from a point and then used to ensure that wall studs are vertical. How does the plumb line help to find the distance from a point to the floor?

31. ALGEBRA In the coordinate plane, if a line has equation \(ax + by = c \), then the distance from a point \((x_1, y_1) \) is given by \(\frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}} \). Determine the distance from \((4, 6) \) to the line whose equation is \(3x + 4y = 6 \).

32. CRITICAL THINKING Draw a diagram that represents each description.
 a. Point \(P \) is equidistant from two parallel lines.
 b. Point \(P \) is equidistant from two intersecting lines.
 c. Point \(P \) is equidistant from two parallel planes.
 d. Point \(P \) is equidistant from two intersecting planes.
 e. A line is equidistant from two parallel planes.
 f. A plane is equidistant from two other planes that are parallel.
Maintain Your Skills

Mixed Review

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer. (Lesson 3-5)

36. \(\angle 5 \cong \angle 6 \)
37. \(\angle 6 \cong \angle 2 \)
38. \(\angle 1 \) and \(\angle 2 \) are supplementary.

Write an equation in slope-intercept form for each line. (Lesson 3-4)

39. \(a \)
40. \(b \)
41. \(c \)
42. perpendicular to line \(a \), contains \((-1, -4)\)
43. parallel to line \(c \), contains \((2, 5)\)

44. PROOF Write a two-column proof. (Lesson 2-7)

Given: \(NL = NM \)
\(AL = BM \)

Prove: \(NA = NB \)

WebQuest Internet Project

When Is Weather Normal?

It’s time to complete your project. Use the information and data you have gathered about climate and locations on Earth to prepare a portfolio or Web page. Be sure to include graphs and/or tables in the presentation.

www.geometryonline.com/webquest
Non-Euclidean Geometry

So far in this text, we have studied plane Euclidean geometry, which is based on a system of points, lines, and planes. In spherical geometry, we study a system of points, great circles (lines), and spheres (planes). Spherical geometry is one type of non-Euclidean geometry.

Plane Euclidean Geometry

- A line segment is the shortest path between two points.
- There is a unique line passing through any two points.
- A line goes on infinitely in two directions.
- If three points are collinear, exactly one is between the other two.

Spherical Geometry

- An arc of a great circle is the shortest path between two points.
- There is a unique great circle passing through any pair of nonpolar points.
- A great circle is finite and returns to its original starting point.
- If three points are collinear, any one of the three points is between the other two.

<table>
<thead>
<tr>
<th>Plane Euclidean Geometry Lines on the Plane</th>
<th>Spherical Geometry Great Circles (Lines) on the Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A line segment is the shortest path between two points.</td>
<td>1. An arc of a great circle is the shortest path between two points.</td>
</tr>
<tr>
<td>2. There is a unique line passing through any two points.</td>
<td>2. There is a unique great circle passing through any pair of nonpolar points.</td>
</tr>
<tr>
<td>3. A line goes on infinitely in two directions.</td>
<td>3. A great circle is finite and returns to its original starting point.</td>
</tr>
<tr>
<td>4. If three points are collinear, exactly one is between the other two.</td>
<td>4. If three points are collinear, any one of the three points is between the other two.</td>
</tr>
</tbody>
</table>

In spherical geometry, Euclid’s first four postulates and their related theorems hold true. However, theorems that depend on the parallel postulate (Postulate 5) may not be true.

In Euclidean geometry parallel lines lie in the same plane and never intersect. In spherical geometry, the sphere is the plane, and a great circle represents a line. Every great circle containing A intersects ℓ. Thus, there exists no line through point A that is parallel to ℓ.

(continued on the next page)
Every great circle of a sphere intersects all other great circles on that sphere in exactly two points. In the figure at the right, one possible line through point A intersects line \(\ell \) at P and Q.

If two great circles divide a sphere into four congruent regions, the lines are perpendicular to each other at their intersection points. Each longitude circle on Earth intersects the equator at right angles.

Example
Compare Plane and Spherical Geometries

For each property listed from plane Euclidean geometry, write a corresponding statement for spherical geometry.

- a. Perpendicular lines intersect at one point.
- b. Perpendicular lines form four right angles.

Perpendicular great circles intersect at two points.
Perpendicular great circles form eight right angles.

Exercises

For each property from plane Euclidean geometry, write a corresponding statement for spherical geometry.

1. A line goes on infinitely in two directions.
2. A line segment is the shortest path between two points.
3. Two distinct lines with no point of intersection are parallel.
4. Two distinct intersecting lines intersect in exactly one point.
5. A pair of perpendicular straight lines divides the plane into four infinite regions.
6. Parallel lines have infinitely many common perpendicular lines.
7. There is only one distance that can be measured between two points.

If spherical points are restricted to be nonpolar points, determine if each statement from plane Euclidean geometry is also true in spherical geometry. If false, explain your reasoning.

8. Any two distinct points determine exactly one line.
9. If three points are collinear, exactly one point is between the other two.
10. Given a line \(\ell \) and point \(P \) not on \(\ell \), there exists exactly one line parallel to \(\ell \) passing through \(P \).
Chapter 3
Study Guide and Review

Vocabulary and Concept Check

alternate exterior angles (p. 128) parallel lines (p. 126) skew lines (p. 127)
alternate interior angles (p. 128) parallel planes (p. 126) slope (p. 139)
consecutive interior angles (p. 128) plane Euclidean geometry (p. 165) slope-intercept form (p. 145)
corresponding angles (p. 128) point-slope form (p. 145) spherical geometry (p. 165)
equidistant (p. 160) rate of change (p. 140) transversal (p. 127)
non-Euclidean geometry (p. 165)

A complete list of postulates and theorems can be found on pages R1–R8.

Exercises Refer to the figure and choose the term that best completes each sentence.

1. Angles 4 and 5 are (consecutive, alternate) interior angles.
2. The distance from point A to line n is the length of the segment (perpendicular, parallel) to line n through A.
3. If \(\angle 4 \) and \(\angle 6 \) are supplementary, lines m and n are said to be (parallel, intersecting) lines.
4. Line \(\ell \) is a (slope-intercept, transversal) for lines n and m.
5. \(\angle 1 \) and \(\angle 8 \) are (alternate interior, alternate exterior) angles.
6. If \(n \parallel m \), \(\angle 6 \) and \(\angle 3 \) are (supplementary, congruent).
7. Angles 5 and 3 are (consecutive, alternate) interior angles.

Lesson-by-Lesson Review

3-1 Parallel Lines and Transversals

Concept Summary

- Coplanar lines that do not intersect are called parallel.
- When two lines are cut by a transversal, there are many angle relationships.

Example Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

a. \(\angle 7 \) and \(\angle 3 \) corresponding
b. \(\angle 4 \) and \(\angle 6 \) consecutive interior
c. \(\angle 7 \) and \(\angle 2 \) alternate exterior
d. \(\angle 3 \) and \(\angle 6 \) alternate interior

Exercises Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles. See Example 3 on page 128.

8. \(\angle 10 \) and \(\angle 6 \)
9. \(\angle 5 \) and \(\angle 12 \)
10. \(\angle 8 \) and \(\angle 10 \)
11. \(\angle 1 \) and \(\angle 9 \)
12. \(\angle 3 \) and \(\angle 6 \)
13. \(\angle 5 \) and \(\angle 3 \)
14. \(\angle 2 \) and \(\angle 7 \)
15. \(\angle 8 \) and \(\angle 9 \)
3-2 Angles and Parallel Lines

Concept Summary
- Pairs of congruent angles formed by parallel lines and a transversal are corresponding angles, alternate interior angles, and alternate exterior angles.
- Pairs of consecutive interior angles are supplementary.

Example
In the figure, \(\angle 1 = 4p + 15 \), \(\angle 3 = 3p - 10 \), and \(\angle 4 = 6r + 5 \). Find the values of \(p \) and \(r \).

- Find \(p \).

 Since \(\overline{AC} \parallel \overline{BD} \), \(\angle 1 \) and \(\angle 3 \) are supplementary by the Consecutive Interior Angles Theorem.

 \[
 m\angle 1 + m\angle 3 = 180 \quad \text{Definition of supplementary angles}
 \]

 \[
 (4p + 15) + (3p - 10) = 180 \quad \text{Substitution}
 \]

 \[
 7p + 5 = 180 \quad \text{Simplify.}
 \]

 \[
 p = 25 \quad \text{Solve for} \ p.
 \]

- Find \(r \).

 Since \(\overline{AB} \parallel \overline{CD} \), \(\angle 4 \cong \angle 3 \) by the Corresponding Angles Postulate.

 \[
 m\angle 4 = m\angle 3 \quad \text{Definition of congruent angles}
 \]

 \[
 6r + 5 = 3(25) - 10 \quad \text{Substitution,} \ p = 25
 \]

 \[
 6r + 5 = 65 \quad \text{Simplify.}
 \]

 \[
 r = 10 \quad \text{Solve for} \ r.
 \]

Exercises
In the figure, \(m\angle 1 = 53 \). Find the measure of each angle. See Example 1 on page 133.

16. \(\angle 2 \)
17. \(\angle 3 \)
18. \(\angle 4 \)
19. \(\angle 5 \)
20. \(\angle 6 \)
21. \(\angle 7 \)
22. In the figure, \(m\angle 1 = 3a + 40 \), \(m\angle 2 = 2a + 25 \), and \(m\angle 3 = 5b - 26 \). Find \(a \) and \(b \).
See Example 3 on page 135.

3-3 Slopes of Lines

Concept Summary
- The slope of a line is the ratio of its vertical rise to its horizontal run.
- Parallel lines have the same slope, while perpendicular lines have slopes whose product is \(-1\).

Example
Determine whether \(\overline{KM} \) and \(\overline{LN} \) are parallel, perpendicular, or neither for \(K(-3, 3) \), \(M(-1, -3) \), \(L(2, 5) \), and \(N(5, -4) \).

- Slope of \(\overline{KM} \): \(m = \frac{-3 - 3}{-1 - (-3)} = \frac{-6}{2} = -3 \)
- Slope of \(\overline{LN} \): \(m = \frac{-4 - 5}{5 - 2} = \frac{-9}{3} = -3 \)

The slopes are the same. So \(\overline{KM} \) and \(\overline{LN} \) are parallel.
Equations of Lines

Concept Summary

In general, an equation of a line can be written if you are given:
- slope and the \(y \)-intercept
- the slope and the coordinates of a point on the line, or
- the coordinates of two points on the line.

Example

Write an equation in slope-intercept form of the line that passes through \((2, -4)\) and \((-3, 1)\).

Find the slope of the line.

\[
m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{Slope Formula}
\]

\[
= \frac{1 - (-4)}{-3 - 2} \quad (x_1, y_1) = (2, -4), \quad (x_2, y_2) = (-3, 1)
\]

\[
= \frac{5}{-5} \quad \text{or} \quad -1 \quad \text{Simplify.}
\]

Now use the point-slope form and either point to write an equation.

\[
y - y_1 = m(x - x_1) \quad \text{Point-slope form}
\]

\[
y - (-4) = -1(x - 2) \quad m = -1, \quad (x_1, y_1) = (2, -4)
\]

\[
y + 4 = -x + 2 \quad \text{Simplify.}
\]

\[
y = -x - 2 \quad \text{Subtract 4 from each side.}
\]

Exercises

Write an equation in slope-intercept form of the line that satisfies the given conditions.
See Examples 1–3 on pages 145 and 146.

29. \(m = 2, \) contains \((1, -5)\)
30. contains \((2, 5)\) and \((-2, -1)\)
31. \(m = -\frac{2}{7}, \) \(y \)-intercept = 4
32. \(m = -\frac{3}{2}, \) contains \((2, -4)\)
33. \(m = 5, \) \(y \)-intercept = -3
34. contains \((3, -1)\) and \((-4, 6)\)

Proving Lines Parallel

Concept Summary

When lines are cut by a transversal, certain angle relationships produce parallel lines.
- congruent corresponding angles
- congruent alternate interior angles
- supplementary consecutive interior angles
Example

If \(\angle 1 \equiv \angle 8 \), which lines if any are parallel?

\(\angle 1 \) and \(\angle 8 \) are alternate exterior angles for lines \(r \) and \(s \). These lines are cut by the transversal \(p \). Since the angles are congruent, lines \(r \) and \(s \) are parallel by Theorem 3.5.

Exercises

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

See Example 1 on page 152.

35. \(\angle GHL \equiv \angle EJK \)
36. \(m \angle ADJ + m \angle DJE = 180 \)
37. \(\overline{CF} \perp \overline{AL}, \overline{GK} \perp \overline{AL} \)
38. \(\angle DJE \equiv \angle HDJ \)
39. \(m \angle EJK + m \angle JEF = 180 \)
40. \(\angle GHL \equiv \angle CDH \)

Perpendiculars and Distance

Concept Summary

- The distance between a point and a line is measured by the perpendicular segment from the point to the line.

Example

Find the distance between the parallel lines \(q \) and \(r \) whose equations are \(y = x - 2 \) and \(y = x + 2 \), respectively.

- The slope of \(q \) is 1. Choose a point on line \(q \) such as \(P(2, 0) \). Let line \(k \) be perpendicular to \(q \) through \(P \). The slope of line \(k \) is \(-1\). Write an equation for line \(k \).

\[
y = mx + b \quad \text{Slope-intercept form} \\
0 = (-1)(2) + b \quad y = 0, \ m = -1, \ x = 2 \\
2 = b \quad \text{Solve for } b. \quad \text{An equation for } k \text{ is } y = -x + 2.
\]

- Use a system of equations to determine the point of intersection of \(k \) and \(r \).

\[
y = x + 2 \\
y = -x + 2 \\
2y = 4 \quad \text{Add the equations.} \\
y = 2 \quad \text{Divide each side by 2.} \\
\]

Substitute 2 for \(y \) in the original equation.

\[
2 = -x + 2 \\
x = 0 \quad \text{Solve for } x. \\
\]

The point of intersection is (0, 2).

- Now use the Distance Formula to determine the distance between (2, 0) and (0, 2).

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 0)^2 + (0 - 2)^2} = \sqrt{8}
\]

The distance between the lines is \(\sqrt{8} \) or about 2.83 units.

Exercises

Find the distance between each pair of parallel lines.

See Example 3 on page 161.

41. \(y = 2x - 4, y = 2x + 1 \)
42. \(y = \frac{1}{2}x, y = \frac{1}{2}x + 5 \)
1. Write an equation of a line that is perpendicular to \(y = 3x - \frac{2}{3} \).
2. Name a theorem that can be used to prove that two lines are parallel.
3. Find all the angles that are supplementary to \(\angle 1 \).

4. In the figure, \(m\angle 12 = 64 \). Find the measure of each angle.

 4. \(\angle 8 \)
 5. \(\angle 13 \)
 6. \(\angle 7 \)
 7. \(\angle 11 \)
 8. \(\angle 3 \)
 9. \(\angle 4 \)
 10. \(\angle 9 \)
 11. \(\angle 5 \)

Graph the line that satisfies each condition.

 12. slope = \(-1\), contains \(P(-2, 1) \)
 13. contains \(Q(-1, 3) \) and is perpendicular to \(\overline{AB} \) with \(A(-2, 0) \) and \(B(4, 3) \)
 14. contains \(M(1, -1) \) and is parallel to \(\overline{FG} \) with \(F(3, 5) \) and \(G(-3, -1) \)
 15. slope = \(-\frac{4}{3} \), contains \(K(3, -2) \)

For Exercises 16–21, refer to the figure at the right. Find each value if \(p \parallel q \).

 16. \(x \)
 17. \(y \)
 18. \(m\angle FCE \)
 19. \(m\angle ABD \)
 20. \(m\angle BCE \)
 21. \(m\angle CBD \)

Find the distance between each pair of parallel lines.

 22. \(y = 2x - 1, y = 2x + 9 \)
 23. \(y = -x + 4, y = -x - 2 \)

24. **COORDINATE GEOMETRY** Detroit Road starts in the center of the city, and Lorain Road starts 4 miles west of the center of the city. Both roads run southeast. If these roads are put on a coordinate plane with the center of the city at \((0, 0)\), Lorain Road is represented by the equation \(y = -x - 4 \) and Detroit Road is represented by the equation \(y = -x \). How far away is Lorain Road from Detroit Road?

25. **STANDARDIZED TEST PRACTICE** In the figure at the right, which cannot be true if \(m \parallel \ell \) and \(m\angle 1 = 73^\circ \)?

 \(\text{A} \) \(m\angle 4 > 73^\circ \) \(\text{B} \) \(\angle 1 \cong \angle 4 \) \(\text{C} \) \(m\angle 2 + m\angle 3 = 180^\circ \) \(\text{D} \) \(\angle 3 \cong \angle 1 \)
Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Jahaira needed 2 meters of fabric to reupholster a chair in her bedroom. If Jahaira can only find a centimeter ruler, how much fabric should she cut? (Prerequisite Skill)
 A) 20 cm B) 200 cm C) 2000 cm D) 20,000 cm

2. A fisherman uses a coordinate grid marked in miles to locate the nets cast at sea. How far apart are nets A and B? (Lesson 1-3)
 A) 3 mi B) \(\sqrt{28} \) mi C) \(\sqrt{65} \) mi D) 11 mi

3. If \(\angle ABC \equiv \angle CBD \), which statement must be true? (Lesson 1-5)
 A) Segment BC bisects \(\angle ABD \).
 B) \(\angle ABD \) is a right angle.
 C) \(\angle ABC \) and \(\angle CBD \) are supplementary.
 D) Segments AB and BD are perpendicular.

4. Valerie cut a piece of wood at a 72\(^\circ\) angle for her project. What is the degree measure of the supplementary angle on the leftover piece of wood? (Lesson 1-6)
 A) 18 B) 78 C) 98 D) 108

5. A pan balance scale is often used in science classes. What is the value of \(x \) to balance the scale if one side weighs \(4x + 4 \) units and the other weighs \(6x - 8 \) units? (Lesson 2-3)
 A) 1 B) 2 C) 3 D) 6

6. The diagram shows the two posts on which seats are placed and several crossbars. Which term describes \(\angle 6 \) and \(\angle 5 \)? (Lesson 3-1)
 A) alternate exterior angles B) alternate interior angles C) consecutive interior angles D) corresponding angles

7. The quality control manager for the bicycle manufacturer wants to make sure that the two seat posts are parallel. Which angles can she measure to determine this? (Lesson 3-5)
 A) \(\angle 2 \) and \(\angle 3 \) B) \(\angle 1 \) and \(\angle 3 \) C) \(\angle 4 \) and \(\angle 8 \) D) \(\angle 5 \) and \(\angle 7 \)

8. Which is the equation of a line that is perpendicular to the line \(4y - x = 8 \)? (Lesson 3-3)
 A) \(y = -\frac{1}{4}x - 2 \) B) \(y = \frac{1}{4}x + 2 \) C) \(y = -4x - 15 \) D) \(y = 4x + 15 \)

9. The graph of \(y = 2x - 5 \) is shown at the right. How would the graph be different if the number 2 in the equation was replaced with a 4? (Lesson 3-4)
 A) parallel to the line shown above, but shifted two units higher
 B) parallel to the line shown above, but shifted two units lower
 C) have a steeper slope, but intercept the \(y \)-axis at the same point
 D) have a less steep slope, but intercept the \(y \)-axis at the same point
Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

10. What should statement 2 be to complete this proof? (Lesson 2-4)

Given: \(\frac{4x - 6}{3} = 10 \)
Prove: \(x = 9 \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{4x - 6}{3} = 10)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. ?</td>
<td>2. Multiplication Property</td>
</tr>
<tr>
<td>3. (4x - 6 = 30)</td>
<td>3. Simplify.</td>
</tr>
<tr>
<td>4. (4x = 36)</td>
<td>4. Addition Property</td>
</tr>
<tr>
<td>5. (x = 9)</td>
<td>5. Division Property</td>
</tr>
</tbody>
</table>

The director of a high school marching band draws a diagram of a new formation as shown below. In the figure, \(\overline{AB} \parallel \overline{CD} \). Use the figure for Questions 11 and 12.

11. During the performance, a flag holder stands at point \(H \), facing point \(F \), and rotates right until she faces point \(C \). What angle measure describes the flag holder’s rotation? (Lesson 3-2)

12. Band members march along segment \(CH \), turn left at point \(H \), and continue to march along \(HG \). What is \(m \angle CHG ? \) (Lesson 3-2)

13. What is the slope of a line containing points \((3, 4) \) and \((9, 6) ? \) (Lesson 3-3)

Part 3 Extended Response

Record your answers on a sheet of paper. Show your work.

14. To get a player out who was running from third base to home, Kahlil threw the ball a distance of 120 feet, from second base toward home plate. Did the ball reach home plate? Show and explain your calculations to justify your answer. (Lesson 1-3)

15. Brad’s family has subscribed to cable television for 4 years, as shown below.

<table>
<thead>
<tr>
<th>Monthly Cable Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($)</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years Having Cable TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

a. Find the slope of a line connecting the points on the graph. (Lesson 3-4)
b. Describe what the slope of the line represents. (Lesson 3-4)
c. If the trend continues, how much will the cable bill be in the tenth year? (Lesson 3-4)