You can use triangles and their properties to model and analyze many real-world situations. In this unit, you will learn about relationships in and among triangles, including congruence and similarity.
Who Is Behind This Geometry Concept Anyway?

Have you ever wondered who first developed some of the ideas you are learning in your geometry class? Today, many students use the Internet for learning and research. In this project, you will be using the Internet to research a topic in geometry. You will then prepare a portfolio or poster to display your findings.

Log on to www.geometryonline.com/webquest. Begin your WebQuest by reading the Task.

Continue working on your WebQuest as you study Unit 2.
What You’ll Learn

- **Lesson 4-1** Classify triangles.
- **Lesson 4-2** Apply the Angle Sum Theorem and the Exterior Angle Theorem.
- **Lesson 4-3** Identify corresponding parts of congruent triangles.
- **Lessons 4-4 and 4-5** Test for triangle congruence using SSS, SAS, ASA, and AAS.
- **Lesson 4-6** Use properties of isosceles and equilateral triangles.
- **Lesson 4-7** Write coordinate proofs.

Key Vocabulary

- exterior angle (p. 186)
- flow proof (p. 187)
- corollary (p. 188)
- congruent triangles (p. 192)
- coordinate proof (p. 222)

Why It’s Important

Triangles are found everywhere you look. Triangles with the same size and shape can even be found on the tail of a whale. You will learn more about orca whales in Lesson 4-4.
Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 4.

For Lesson 4-1 Solve each equation. (For review, see pages 737 and 738.)

1. \(2x + 18 = 5\)
2. \(3m - 16 = 12\)
3. \(4y + 12 = 16\)
4. \(10 = 8 - 3z\)
5. \(6 = 2a + \frac{1}{2}\)
6. \(\frac{2}{3}p + 9 = -15\)

For Lessons 4-2, 4-4, and 4-5 Congruent Angles

Name the indicated angles or pairs of angles if \(p \parallel q\) and \(m \parallel \ell\). (For review, see Lesson 3-1.)

7. angles congruent to \(\angle 8\)
8. angles congruent to \(\angle 13\)
9. angles supplementary to \(\angle 1\)
10. angles supplementary to \(\angle 12\)

For Lessons 4-3 and 4-7 Distance Formula

Find the distance between each pair of points. Round to the nearest tenth. (For review, see Lesson 1-3.)

11. \((6, 8), (-4, 3)\)
12. \((-15, 12), (6, 18)\)
13. \((11, -8), (-3, -4)\)
14. \((-10, 4), (8, -7)\)

Foldables Study Organizer

Triangles Make this Foldable to help you organize your notes. Begin with two sheets of grid paper and one sheet of construction paper.

Step 1 Fold and Cut
Stack the grid paper on the construction paper. Fold diagonally as shown and cut off the excess.

Step 2 Staple and Label
Staple the edge to form a booklet. Then label each page with a lesson number and title.

Reading and Writing As you read and study the chapter, use your journal for sketches and examples of terms associated with triangles and sample proofs.
4-1 Classifying Triangles

What You’ll Learn
- Identify and classify triangles by angles.
- Identify and classify triangles by sides.

Vocabulary
- acute triangle
- obtuse triangle
- right triangle
- equiangular triangle
- scalene triangle
- isosceles triangle
- equilateral triangle

Why are triangles important in construction?
Many structures use triangular shapes as braces for construction. The roof sections of houses are made of triangular trusses that support the roof and the house.

CLASSIFY TRIANGLES BY ANGLES
Recall that a triangle is a three-sided polygon. Triangle ABC, written $\triangle ABC$, has parts that are named using the letters A, B, and C.
- The sides of $\triangle ABC$ are \overline{AB}, \overline{BC}, and \overline{CA}.
- The vertices are A, B, and C.
- The angles are $\angle ABC$, $\angle BCA$, and $\angle BAC$.

There are two ways to classify triangles. One way is by their angles. All triangles have at least two acute angles, but the third angle is used to classify the triangle.

Key Concept

<table>
<thead>
<tr>
<th>Triangle Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acute triangle</td>
<td>All angles are acute.</td>
</tr>
<tr>
<td>obtuse triangle</td>
<td>One angle is obtuse.</td>
</tr>
<tr>
<td>right triangle</td>
<td>One angle is right.</td>
</tr>
</tbody>
</table>

An acute triangle with all angles congruent is an equiangular triangle.

Example 1 Classify Triangles by Angles

ARCHITECTURE
The roof of this house is made up of three different triangles. Use a protractor to classify $\triangle DFH$, $\triangle DFG$, and $\triangle HFG$ as acute, equiangular, obtuse, or right.

$\triangle DFH$ has all angles with measures less than 90°, so it is an acute triangle. $\triangle DFG$ and $\triangle HFG$ both have one angle with measure equal to 90°. Both of these are right triangles.
CLASSIFY TRIANGLES BY SIDES Triangles can also be classified according to the number of congruent sides they have. To indicate that sides of a triangle are congruent, an equal number of hash marks are drawn on the corresponding sides.

Key Concept

<table>
<thead>
<tr>
<th>No two sides of a</th>
<th>At least two sides of an</th>
<th>All of the sides of an</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalene triangle</td>
<td>isosceles triangle</td>
<td>equilateral triangle</td>
</tr>
<tr>
<td>are congruent.</td>
<td>are congruent.</td>
<td>are congruent.</td>
</tr>
</tbody>
</table>

An equilateral triangle is a special kind of isosceles triangle.

Geometry Activity

Equilateral Triangles

Model
- Align three pieces of patty paper as indicated. Draw a dot at X.
- Fold the patty paper through X and Y and through X and Z.

Analyze
1. Is $\triangle XYZ$ equilateral? Explain.
2. Use three pieces of patty paper to make a triangle that is isosceles, but not equilateral.
3. Use three pieces of patty paper to make a scalene triangle.

Example 2

Classify Triangles by Sides

Identify the indicated type of triangle in the figure.

a. **isosceles triangles**
 - Isosceles triangles have at least two sides congruent. So, $\triangle ABD$ and $\triangle EBD$ are isosceles.

b. **scalene triangles**
 - Scalene triangles have no congruent sides. $\triangle AEB$, $\triangle AED$, $\triangle ACB$, $\triangle ACD$, $\triangle BCE$, and $\triangle DCE$ are scalene.

Example 3

Find Missing Values

ALGEBRA Find x and the measure of each side of equilateral triangle RST if $RS = x + 9$, $ST = 2x$, and $RT = 3x - 9$.

Since $\triangle RST$ is equilateral, $RS = ST$.

$x + 9 = 2x$ \hspace{1cm} \text{Substitution}
$9 = x$ \hspace{1cm} \text{Subtract } x \text{ from each side.}

Next, substitute to find the length of each side.

$RS = x + 9$ \hspace{1cm} $ST = 2x$ \hspace{1cm} $RT = 3x - 9$
$= 9 + 9 \text{ or } 18$ \hspace{1cm} $= 2(9) \text{ or } 18$ \hspace{1cm} $= 3(9) - 9 \text{ or } 18$

For $\triangle RST$, $x = 9$, and the measure of each side is 18.
Example 4 Use the Distance Formula

COORDINATE GEOMETRY Find the measures of the sides of $\triangle DEC$. Classify the triangle by sides.

Use the Distance Formula to find the lengths of each side.

$$EC = \sqrt{(-5 - 2)^2 + (3 - 2)^2} \quad ED = \sqrt{(-5 - 3)^2 + (3 - 9)^2}$$

$$= \sqrt{49 + 1} \quad = \sqrt{64 + 36}$$

$$= \sqrt{50} \quad = \sqrt{100}$$

$$DC = \sqrt{(3 - 2)^2 + (9 - 2)^2}$$

$$= \sqrt{1 + 49} \quad = \sqrt{50}$$

Since EC and DC have the same length, $\triangle DEC$ is isosceles.

Check for Understanding

Concept Check

1. **Explain** how a triangle can be classified in two ways.

2. **OPEN ENDED** Draw a triangle that is isosceles and right.

Determine whether each of the following statements is always, sometimes, or never true. Explain.

3. Equiangular triangles are also acute.

4. Right triangles are acute.

Guided Practice

Use a protractor to classify each triangle as acute, equiangular, obtuse, or right.

5.

6.

7. Identify the obtuse triangles if $\angle MJK \cong \angle KLM$, $m\angle MJK = 126$, and $m\angle JNM = 52$.

8. Identify the right triangles if $IJ \parallel GH$, $GH \perp DE$, and $GI \perp EF$.

9. **ALGEBRA** Find x, JM, MN, and JN if $\triangle JMN$ is an isosceles triangle with $JM \cong MN$.

10. **ALGEBRA** Find x, QR, RS, and QS if $\triangle QRS$ is an equilateral triangle.
11. Find the measures of the sides of $\triangle TWZ$ with vertices at $T(2, 6)$, $W(4, -5)$, and $Z(-3, 0)$. Classify the triangle.

12. **QUILTING** The star-shaped composite quilting square is made up of four different triangles. Use a ruler to classify the four triangles by sides.

13. **ASTRONOMY** On May 5, 2002, Venus, Saturn, and Mars were aligned in a triangular formation. Use a protractor or ruler to classify the triangle formed by sides and angles.

14. **RESEARCH** Use the Internet or other resource to find out how astronomers can predict planetary alignment.

15. **ARCHITECTURE** The restored and decorated Victorian houses in San Francisco are called the “Painted Ladies.” Use a protractor to classify the triangles indicated in the photo by sides and angles.

16. **ALGEBRA** Find x and the measure of each side of the triangle.

- 26. $\triangle GHJ$ is isosceles, with $\overline{HG} \equiv \overline{GJ}$, $GH = x + 7$, $GJ = 3x - 5$, and $HJ = x - 1$.
- 27. $\triangle MPN$ is equilateral with $MN = 3x - 6$, $MP = x + 4$, and $NP = 2x - 1$.
- 28. $\triangle QRS$ is equilateral. QR is two less than two times a number, RS is six more than the number, and QS is ten less than three times the number.
- 29. $\triangle KL$ is isosceles with $\overline{KJ} \equiv \overline{LJ}$. JL is five less than two times a number. JK is three more than the number. KL is one less than the number. Find the measure of each side.
30. **CRYSTAL** The top of the crystal bowl shown is circular. The diameter at the top of the bowl is MN. P is the midpoint of MN, and $OP \perp MN$. If $MN = 24$ and $OP = 12$, determine whether \(\triangle MPO \) and \(\triangle NPO \) are equilateral.

31. **MAPS** The total distance from Nashville, Tennessee, to Cairo, Illinois, to Lexington, Kentucky, and back to Nashville, Tennessee, is 593 miles. The distance from Cairo to Lexington is 81 more miles than the distance from Lexington to Nashville. The distance from Cairo to Nashville is 40 miles less than the distance from Nashville to Lexington. Classify the triangle formed by its sides.

32. Find the measures of the sides of \(\triangle ABC \) and classify each triangle by its sides.

33. Write a two-column proof to prove that \(\triangle EQL \) is equiangular.

34. Write a paragraph proof to prove that \(\triangle RPM \) is an obtuse triangle if \(m \angle NPM = 33 \).

35. **COORDINATE GEOMETRY** Show that S is the midpoint of RT and U is the midpoint of TV.

36. **COORDINATE GEOMETRY** Show that $\triangle ADC$ is isosceles.

37. **CRITICAL THINKING** KL is a segment representing one side of isosceles right triangle KLM, with $K(2, 6)$, and $L(4, 2)$. \(\angle KLM \) is a right angle, and $KL \equiv LM$. Describe how to find the coordinates of vertex M and name these coordinates.
43. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

Why are triangles important in construction?
Include the following in your answer:
• describe how to classify triangles, and
• if one type of triangle is used more often in architecture than other types.

44. Classify \(\triangle ABC \) with vertices \(A(-1, 1) \), \(B(1, 3) \), and \(C(3, -1) \).

\[\text{A} \] scalene acute \hspace{1cm} \[\text{B} \] equilateral \hspace{1cm} \[\text{C} \] isosceles acute \hspace{1cm} \[\text{D} \] isosceles right

45. **ALGEBRA** Find the value of \(y \) if the mean of \(x \), \(y \), 15, and 35 is 25 and the mean of \(x \), 15, and 35 is 27.

\[\text{A} \] 18 \hspace{1cm} \[\text{B} \] 19 \hspace{1cm} \[\text{C} \] 31 \hspace{1cm} \[\text{D} \] 36

Maintain Your Skills

Mixed Review

Graph each line. Construct a perpendicular segment through the given point. Then find the distance from the point to the line. *(Lesson 3-6)*

46. \(y = x + 2 \), \((2, -2)\) \hspace{1cm} 47. \(x + y = 2 \), \((3, 3)\) \hspace{1cm} 48. \(y = 7 \), \((6, -2)\)

Find \(x \) so that \(p \parallel q \). *(Lesson 3-5)*

49. \(110^\circ \) \hspace{1cm} 50. \((3x-50)^\circ \) \hspace{1cm} 51. \((3x-9)^\circ \)

For this proof, the reasons in the right column are not in the proper order. Reorder the reasons to properly match the statements in the left column. *(Lesson 2-6)*

52. Given: \(3x - 4 = x - 10 \)
Prove: \(x = -3 \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (3x - 4 = x - 10)</td>
<td>1. Subtraction Property</td>
</tr>
<tr>
<td>b. (2x - 4 = -10)</td>
<td>2. Division Property</td>
</tr>
<tr>
<td>c. (2x = -6)</td>
<td>3. Given</td>
</tr>
<tr>
<td>d. (x = -3)</td>
<td>4. Addition Property</td>
</tr>
</tbody>
</table>

Getting Ready for the Next Lesson

PREREQUISITE SKILL In the figure, \(AB \parallel RQ \), \(BC \parallel PR \), and \(AC \parallel PQ \). Name the indicated angles or pairs of angles.
(To review angles formed by parallel lines and a transversal, see Lessons 3-1 and 3-2.)

53. three pairs of alternate interior angles
54. six pairs of corresponding angles
55. all angles congruent to \(\angle 3 \)
56. all angles congruent to \(\angle 7 \)
57. all angles congruent to \(\angle 11 \)
Angles of Triangles

There are special relationships among the angles of a triangle.

Activity 1 Find the relationship among the measures of the interior angles of a triangle.

1. **Step 1** Draw an obtuse triangle and cut it out. Label the vertices A, B, and C.
2. **Step 2** Find the midpoint of AB by matching A to B. Label this point D.
3. **Step 3** Find the midpoint of BC by matching B to C. Label this point E.
4. **Step 4** Draw DE.
5. **Step 5** Fold $\triangle ABC$ along DE. Label the point where B touches AC as F.
6. **Step 6** Draw DF and FE. Measure each angle.

Analyze the Model

Describe the relationship between each pair.

1. $\angle A$ and $\angle DFA$
2. $\angle B$ and $\angle DFE$
3. $\angle C$ and $\angle EFC$
4. What is the sum of the measures of $\angle DFA$, $\angle DFE$, and $\angle EFC$?
5. What is the sum of the measures of $\angle A$, $\angle B$, and $\angle C$?
6. Make a conjecture about the sum of the measures of the angles of any triangle.

In the figure at the right, $\angle 4$ is called an **exterior angle** of the triangle. $\angle 1$ and $\angle 2$ are the **remote interior angles** of $\angle 4$.

Activity 2 Find the relationship among the interior and exterior angles of a triangle.

1. **Step 1** Trace $\triangle ABC$ from Activity 1 onto a piece of paper. Label the vertices.
2. **Step 2** Extend AC to draw an exterior angle at C.
3. **Step 3** Tear $\angle A$ and $\angle B$ off the triangle from Activity 1.
4. **Step 4** Place $\angle A$ and $\angle B$ over the exterior angle.

Analyze the Model

7. Make a conjecture about the relationship of $\angle A$, $\angle B$, and the exterior angle at C.
8. Repeat the steps for the exterior angles of $\angle A$ and $\angle B$.
9. Is your conjecture true for all exterior angles of a triangle?
10. Repeat Activity 2 with an acute triangle.
11. Repeat Activity 2 with a right triangle.
12. Make a conjecture about the measure of an exterior angle and the sum of the measures of its remote interior angles.
Angle Sum Theorem

If the measures of two of the angles of a triangle are known, how can the measure of the third angle be determined? The Angle Sum Theorem explains that the sum of the measures of the angles of any triangle is always 180.

Theorem 4.1

Angle Sum Theorem
The sum of the measures of the angles of a triangle is 180.

Example: \(m\angle W + m\angle X + m\angle Y = 180 \)

Proof

Given: \(\triangle ABC \)

Prove: \(m\angle C + m\angle 2 + m\angle B = 180 \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle ABC)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. Draw (XY) through (A) parallel to (CB).</td>
<td>2. Parallel Postulate</td>
</tr>
<tr>
<td>3. (\angle 1) and (\angle CAY) form a linear pair.</td>
<td>3. Def. of a linear pair</td>
</tr>
<tr>
<td>4. (\angle 1) and (\angle CAY) are supplementary.</td>
<td>4. If 2 (\triangle) form a linear pair, they are supplementary.</td>
</tr>
<tr>
<td>5. (m\angle 1 + m\angle CAY = 180)</td>
<td>5. Def. of suppl. (\triangle)</td>
</tr>
<tr>
<td>6. (m\angle CAY = m\angle 2 + m\angle 3)</td>
<td>6. Angle Addition Postulate</td>
</tr>
<tr>
<td>7. (m\angle 1 + m\angle 2 + m\angle 3 = 180)</td>
<td>7. Substitution</td>
</tr>
<tr>
<td>8. (\angle 1 \equiv \angle C, \angle 3 \equiv \angle B)</td>
<td>8. Alt. Int. (\triangle) Theorem</td>
</tr>
<tr>
<td>9. (m\angle 1 = m\angle C, m\angle 3 = m\angle B)</td>
<td>9. Def. of (\equiv \triangle)</td>
</tr>
<tr>
<td>10. (m\angle C + m\angle 2 + m\angle B = 180)</td>
<td>10. Substitution</td>
</tr>
</tbody>
</table>
If we know the measures of two angles of a triangle, we can find the measure of the third.

Example 1 Interior Angles

Find the missing angle measures.

Find $m\angle 1$ first because the measures of two angles of the triangle are known.

\[
m\angle 1 + 28 + 82 = 180 \quad \text{Angle Sum Theorem}
\]

\[
m\angle 1 + 110 = 180 \quad \text{Simplify.}
\]

\[
m\angle 1 = 70 \quad \text{Subtract 110 from each side.}
\]

$\angle 1$ and $\angle 2$ are congruent vertical angles. So $m\angle 2 = 70$.

\[
m\angle 3 + 68 + 70 = 180 \quad \text{Angle Sum Theorem}
\]

\[
m\angle 3 + 138 = 180 \quad \text{Simplify.}
\]

\[
m\angle 3 = 42 \quad \text{Subtract 138 from each side.}
\]

Therefore, $m\angle 1 = 70, m\angle 2 = 70,$ and $m\angle 3 = 42$.

The Angle Sum Theorem leads to a useful theorem about the angles in two triangles.

Theorem 4.2 Third Angle Theorem

If two angles of one triangle are congruent to two angles of a second triangle, then the third angles of the triangles are congruent.

Example: If $\angle A \cong \angle F$ and $\angle C \cong \angle D$, then $\angle B \cong \angle E$.

You will prove this theorem in Exercise 44.

EXTERIOR ANGLE THEOREM

Each angle of a triangle has an exterior angle. An exterior angle is formed by one side of a triangle and the extension of another side. The interior angles of the triangle not adjacent to a given exterior angle are called remote interior angles of the exterior angle.

Theorem 4.3 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

Example: $m\angle YZP = m\angle X + m\angle Y$
We will use a flow proof to prove this theorem. A flow proof organizes a series of statements in logical order, starting with the given statements. Each statement is written in a box with the reason verifying the statement written below the box. Arrows are used to indicate how the statements relate to each other.

Proof

Exterior Angle Theorem

Write a flow proof of the Exterior Angle Theorem.

Given: \(\triangle ABC \)

Prove: \(m\angle CBD = m\angle A + m\angle C \)

Flow Proof:

```
\begin{align*}
\Delta ABC & \quad \text{Given} \\
m\angle A + m\angle ABC + m\angle C &= 180 \\
\angle CBD \text{ and } \angle ABC & \quad \text{form a linear pair.} \\
\text{Definition of linear pair} \\
\angle CBD \text{ and } \angle ABC & \quad \text{are supplementary.} \\
\text{If } \angle \text{ form a linear pair, they are supplementary.} \\
m\angle CBD + m\angle ABC &= 180 \\
\text{Definition of supplementary} \\
m\angle A + m\angle ABC + m\angle C &= m\angle CBD + m\angle ABC \\
\text{Substitution Property} \\
m\angle A + m\angle C &= m\angle CBD \\
\text{Subtraction Property}
\end{align*}
```

Example 2

Exterior Angles

Find the measure of each numbered angle in the figure.

\[
m\angle 1 = 50 + 78
\]

\[
= 128
\]

Exterior Angle Theorem

Simplify.

\[
m\angle 1 + m\angle 2 = 180
\]

If \(\angle \text{ form a linear pair, they are suppl.} \)

\[
128 + m\angle 2 = 180
\]

Substitution

\[
m\angle 2 = 52
\]

Subtract 128 from each side.

\[
m\angle 2 + m\angle 3 = 120
\]

Exterior Angle Theorem

\[
52 + m\angle 3 = 120
\]

Substitution

\[
m\angle 3 = 68
\]

Subtract 52 from each side.

\[
120 + m\angle 4 = 180
\]

If \(\angle \text{ form a linear pair, they are suppl.} \)

\[
m\angle 4 = 60
\]

Subtract 120 from each side.

\[
m\angle 5 = m\angle 4 + 56
\]

Exterior Angle Theorem

\[
= 60 + 56
\]

Substitution

\[
= 116
\]

Simplify.

Therefore, \(m\angle 1 = 128, m\angle 2 = 52, m\angle 3 = 68, m\angle 4 = 60, \) and \(m\angle 5 = 116.\)
A statement that can be easily proved using a theorem is often called a **corollary** of that theorem. A corollary, just like a theorem, can be used as a reason in a proof.

Corollaries

4.1 The acute angles of a right triangle are complementary.

Example: \(m\angle G + m\angle J = 90\)

4.2 There can be at most one right or obtuse angle in a triangle.

You will prove Corollaries 4.1 and 4.2 in Exercises 42 and 43.

Example 3 **Right Angles**

SKI JUMPING Ski jumper Simon Ammann of Switzerland forms a right triangle with his skis and his line of sight. Find \(m\angle 2\) if \(m\angle 1\) is 27.

Use Corollary 4.1 to write an equation.

\[m\angle 1 + m\angle 2 = 90\]

Substitution

\[27 + m\angle 2 = 90\]

Subtract 27 from each side.

\[m\angle 2 = 63\]

Check for Understanding

Concept Check

1. **OPEN ENDED** Draw a triangle. Label one exterior angle and its remote interior angles.

2. **FIND THE ERROR** Najee and Kara are discussing the Exterior Angle Theorem.

 Najee: \(m\angle 1 + m\angle 2 = m\angle 4\)

 Kara: \(m\angle 1 + m\angle 2 + m\angle 4 = 180\)

 Who is correct? Explain your reasoning.

Guided Practice

Find the missing angle measure.

3. [Diagram of Toledo, Pittsburgh, and Cincinnati with angles 85°, 52°, and 62°]

4. [Diagram with angles 62°, 19°, and 32°]

Find each measure.

5. \(m\angle 1\)

6. \(m\angle 2\)

7. \(m\angle 3\)
Find each measure.
8. \(m\angle 1 \)
9. \(m\angle 2 \)

Application 10. **SKI JUMPING** American ski jumper Eric Bergoust forms a right angle with his skis. If \(m\angle 2 = 70 \), find \(m\angle 1 \).

Practice and Apply

Find the missing angle measures.

11.

12.

13.

14.

Find each measure.

15. \(m\angle 1 \)
16. \(m\angle 2 \)
17. \(m\angle 3 \)

Find each measure if \(m\angle 4 = m\angle 5 \).

18. \(m\angle 1 \)
19. \(m\angle 2 \)
20. \(m\angle 3 \)
21. \(m\angle 4 \)
22. \(m\angle 5 \)
23. \(m\angle 6 \)
24. \(m\angle 7 \)

Find each measure.

25. \(m\angle 1 \)
26. \(m\angle 2 \)
27. \(m\angle 3 \)
SPEED SKATING For Exercises 28–31, use the following information.
Speed skater Catriona Lemay Doan of Canada forms at least two sets of triangles
and exterior angles as she
skates. Use the measures
of given angles to find each
measure.
28. $m\angle 1$
29. $m\angle 2$
30. $m\angle 3$
31. $m\angle 4$

Online Research Data Update Use the Internet or other resource to find the
world record in speed skating. Visit www.geometryonline.com/data_update
to learn more.

Find each measure if $m\angle DGF = 53$
and $m\angle AGC = 40$.
32. $m\angle 1$
33. $m\angle 2$
34. $m\angle 3$
35. $m\angle 4$

HOUSING For Exercises 36–38, use
the following information.
The two braces for the roof of a house
form triangles. Find each measure.
36. $m\angle 1$
37. $m\angle 2$
38. $m\angle 3$

PROOF For Exercises 39–44, write the specified type of proof.
39. flow proof
 Given: $\triangle FGI \cong \triangle IGH$
 $GI \perp FH$
 Prove: $\angle F \cong \angle H$
40. two-column
 Given: $ABCD$ is a quadrilateral.
 Prove: $m\angle DAB + m\angle B +$
 $m\angle BCD + m\angle D = 360$
41. two-column proof of Theorem 4.3
42. flow proof of Corollary 4.1
43. paragraph proof of Corollary 4.2
44. two-column proof of Theorem 4.2
45. CRITICAL THINKING BA and BC are opposite
 rays. The measures of $\angle 1$, $\angle 2$, and $\angle 3$ are in a
 4:5:6 ratio. Find the measure of each angle.
46. **WRITING IN MATH**
Answer the question that was posed at the beginning of the lesson.

How are the angles of triangles used to make kites?

Include the following in your answer:
- if two angles of two triangles are congruent, how you can find the measure of the third angle, and
- if one angle measures 90°, describe the other two angles.

47. In the triangle, what is the measure of \(\angle Z \)?

- **A** 18°
- **B** 24°
- **C** 72°
- **D** 90°

48. **ALGEBRA** The measure of the second angle of a triangle is three times the measure of the first, and the measure of the third angle is 25 more than the measure of the first. Find the measure of each angle.

- **A** 25°, 85°, 70°
- **B** 31°, 93°, 56°
- **C** 39°, 87°, 54°
- **D** 42°, 54°, 84°

Maintain Your Skills

Mixed Review Identify the indicated type of triangle if

- \(BC \cong AD, \ EB \cong EC, \ AC \) bisects \(BD \), and \(m\angle AED = 125° \). *(Lesson 4-1)*

- **49.** scalene triangles
- **50.** obtuse triangles
- **51.** isosceles triangles

Find the distance between each pair of parallel lines. *(Lesson 3-6)*

- **52.** \(y = x + 6, \ y = x - 10 \)
- **53.** \(y = -2x + 3, \ y = -2x - 7 \)
- **54.** \(4x - y = 20, \ 4x - y = 3 \)
- **55.** \(2x - 3y = -9, \ 2x - 3y = -6 \)

Find \(x, \ y, \) and \(z \) in each figure. *(Lesson 3-2)*

- **56.**
- **57.**
- **58.**

PREREQUISITE SKILL Name the property of congruence that justifies each statement. *(To review properties of congruence, see Lessons 2-5 and 2-6.)*

- **59.** \(\angle 1 \cong \angle 1 \) and \(\overline{AB} \cong \overline{AB} \).
- **60.** If \(\overline{AB} \cong \overline{XY} \), then \(\overline{XY} \cong \overline{AB} \).
- **61.** If \(\angle 1 \cong \angle 2 \), then \(\angle 2 \cong \angle 1 \).
- **62.** If \(\angle 2 \cong \angle 3 \) and \(\angle 3 \cong \angle 4 \), then \(\angle 2 \cong \angle 4 \).
- **63.** If \(\overline{PQ} \cong \overline{XY} \) and \(\overline{XY} \cong \overline{HK} \), then \(\overline{PQ} \cong \overline{HK} \).
- **64.** If \(\overline{AB} \cong \overline{CD}, \ \overline{CD} \cong \overline{PQ} \), and \(\overline{PQ} \cong \overline{XY} \), then \(\overline{AB} \cong \overline{XY} \).
CORRESPONDING PARTS OF CONGRUENT TRIANGLES

Triangles that are the same size and shape are **congruent triangles**. Each triangle has three angles and three sides. If all six of the corresponding parts of two triangles are congruent, then the triangles are congruent.

If \(\triangle ABC \) is congruent to \(\triangle EFG \), the vertices of the two triangles correspond in the same order as the letters naming the triangles.

\[\triangle ABC \cong \triangle EFG \]

This correspondence of vertices can be used to name the corresponding congruent sides and angles of the two triangles.

\[\angle A \cong \angle E \quad \angle B \cong \angle F \quad \angle C \cong \angle G \]
\[AB \cong EF \quad BC \cong FG \quad AC \cong EG \]

The corresponding sides and angles can be determined from any congruence statement by following the order of the letters.

Key Concept

Definition of Congruent Triangles (CPCTC)

Two triangles are congruent if and only if their corresponding parts are congruent.

CPCTC stands for corresponding parts of congruent triangles are congruent. “If and only if” is used to show that both the conditional and its converse are true.
Example 1
Corresponding Congruent Parts

FURNITURE DESIGN The seat and legs of this stool form two triangles. Suppose the measures in inches are \(QR = 12 \), \(RS = 23 \), \(QS = 24 \), \(RT = 12 \), \(TV = 24 \), and \(RV = 23 \).

- **a.** Name the corresponding congruent angles and sides.
 \[\angle Q \cong \angle T \quad \angle QRS \cong \angle TRV \quad \angle S \cong \angle V \]
 \[QR \cong TR \quad RS \cong RV \quad QS \cong TV \]

- **b.** Name the congruent triangles.
 \(\triangle QRS \cong \triangle TRV \)

Like congruence of segments and angles, congruence of triangles is reflexive, symmetric, and transitive.

Theorem 4.4
Properties of Triangle Congruence

<table>
<thead>
<tr>
<th>Reflexive</th>
<th>Symmetric</th>
<th>Transitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle JKL \cong \triangle JKL)</td>
<td>If (\triangle JKL \cong \triangle PQR), then (\triangle PQR \cong \triangle JKL).</td>
<td>If (\triangle JKL \cong \triangle PQR), and (\triangle PQR \cong \triangle XYZ), then (\triangle JKL \cong \triangle XYZ).</td>
</tr>
</tbody>
</table>

You will prove the symmetric and reflexive parts of Theorem 4.4 in Exercises 33 and 35, respectively.

Proof
Theorem 4.4 (Transitive)

- **Given:** \(\triangle ABC \cong \triangle DEF \)
 \(\triangle DEF \cong \triangle GHI \)
- **Prove:** \(\triangle ABC \cong \triangle GHI \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle ABC \cong \triangle DEF)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle A \cong \angle D), (\angle B \cong \angle E), (\angle C \cong \angle F)</td>
<td>2. CPCTC</td>
</tr>
<tr>
<td>(AB \cong DE), (BC \cong EF), (AC \cong DF)</td>
<td>3. Given</td>
</tr>
<tr>
<td>3. (\triangle DEF \cong \triangle GHI)</td>
<td>4. CPCTC</td>
</tr>
<tr>
<td>4. (\angle D \cong \angle G), (\angle E \cong \angle H), (\angle F \cong \angle I)</td>
<td>5. Congruence of angles is transitive.</td>
</tr>
<tr>
<td>(DE \cong GH), (EF \cong HI), (DF \cong GI)</td>
<td>6. Congruence of segments is transitive.</td>
</tr>
<tr>
<td>5. (\angle A \cong \angle G), (\angle B \cong \angle H), (\angle C \cong \angle I)</td>
<td>7. Def. of (\cong) s</td>
</tr>
<tr>
<td>(AB \cong GH), (BC \cong HI), (AC \cong GI)</td>
<td></td>
</tr>
<tr>
<td>7. (\triangle ABC \cong \triangle GHI)</td>
<td></td>
</tr>
</tbody>
</table>

See www.geometryonline.com/extra_examples/sol
IDENTIFY CONGRUENCE TRANSFORMATIONS

In the figures below, \(\triangle ABC \) is congruent to \(\triangle DEF \). If you slide \(\triangle DEF \) up and to the right, \(\triangle DEF \) is still congruent to \(\triangle ABC \).

![Diagram of congruent triangles](image)

The congruency does not change whether you turn \(\triangle DEF \) or flip \(\triangle DEF \). \(\triangle ABC \) is still congruent to \(\triangle DEF \).

If you slide, flip, or turn a triangle, the size and shape do not change. These three transformations are called **congruence transformations**.

Example 2

Transformations in the Coordinate Plane

COORDINATE GEOMETRY

The vertices of \(\triangle CDE \) are \(C(-5, 7), D(-8, 6), \) and \(E(-3, 3) \). The vertices of \(\triangle C'D'E' \) are \(C'(5, 7), D'(8, 6), \) and \(E'(3, 3) \).

- **a. Verify that \(\triangle CDE \cong \triangle C'D'E' \).**

 Use the Distance Formula to find the length of each side in the triangles.

 \[
 \begin{align*}
 DC &= \sqrt{(-8 - (-5))^2 + (6 - 7)^2} = \sqrt{9 + 1} \text{ or } \sqrt{10} \\
 D'C' &= \sqrt{(8 - 5)^2 + (6 - 7)^2} = \sqrt{9 + 1} \text{ or } \sqrt{10} \\
 DE &= \sqrt{(-8 - (-3))^2 + (6 - 3)^2} = \sqrt{25 + 9} \text{ or } \sqrt{34} \\
 D'E' &= \sqrt{(8 - 3)^2 + (6 - 3)^2} = \sqrt{25 + 9} \text{ or } \sqrt{34} \\
 CE &= \sqrt{(-5 - (-3))^2 + (7 - 3)^2} = \sqrt{4 + 16} \text{ or } \sqrt{20} \\
 C'E' &= \sqrt{(5 - 3)^2 + (7 - 3)^2} = \sqrt{4 + 16} \text{ or } \sqrt{20}
 \end{align*}
 \]

 By the definition of congruence, \(DC \cong D'C', DE \cong D'E', \) and \(CE \cong C'E' \).

 Use a protractor to measure the angles of the triangles. You will find that the measures are the same.

 In conclusion, because \(DC \cong D'C', DE \cong D'E', \) and \(CE \cong C'E', \angle D \cong \angle D', \angle C \cong \angle C', \) and \(\angle E \cong \angle E', \triangle DCE \cong \triangle D'C'E' \).

- **b. Name the congruence transformation for \(\triangle CDE \) and \(\triangle C'D'E' \).**

 \(\triangle C'D'E' \) is a flip of \(\triangle CDE \).
Check for Understanding

Concept Check
1. Explain how slides, flips, and turns preserve congruence.
2. OPEN ENDED Draw a pair of congruent triangles and label the congruent sides and angles.

Guided Practice
Identify the congruent triangles in each figure.
3.

4.

5. If \(\triangle WXZ \cong \triangle STJ \), name the congruent angles and congruent sides.
6. QUILTING In the quilt design, assume that angles and segments that appear to be congruent are congruent. Indicate which triangles are congruent.
7. The coordinates of the vertices of \(\triangle QRT \) and \(\triangle Q'R'T' \) are \(Q(-4, 3), Q'(4, 3), R(-4, -2), R'(4, -2), T(-1, -2), \) and \(T'(1, -2) \). Verify that \(\triangle QRT \cong \triangle Q'R'T' \). Then name the congruence transformation.

Application
8. GARDENING This garden lattice will be covered with morning glories in the summer. Wesley wants to save two triangular areas for artwork. If \(\triangle GHJ \cong \triangle KLP \), name the corresponding congruent angles and sides.

Practice and Apply
Identify the congruent triangles in each figure.
9.

10.

11.

12.

Name the congruent angles and sides for each pair of congruent triangles.
13. \(\triangle TUV \cong \triangle XYZ \)
14. \(\triangle CDG \cong \triangle RSW \)
15. \(\triangle BCF \cong \triangle DGH \)
16. \(\triangle ADG \cong \triangle HKL \)
Assume that segments and angles that appear to be congruent in the numbered triangles are congruent. Indicate which triangles are congruent.

17. 18. 19.

20. All of the small triangles in the figure at the right are congruent. Name three larger congruent triangles.

21. **MOSAICS** The picture at the left is the center of a Roman mosaic. Because the four triangles connect to a square, they have at least one side congruent to a side in another triangle. What else do you need to know to conclude that the four triangles are congruent?

Verify that each of the following preserves congruence and name the congruence transformation.

22. \(\triangle PQV \cong \triangle P'Q'V' \)

23. \(\triangle MNP \cong \triangle M'N'P' \)

24. \(\triangle GHF \cong \triangle G'H'F' \)

25. \(\triangle JKL \cong \triangle J'K'L' \)

Determine whether each statement is true or false. Draw an example or counterexample for each.

26. Two triangles with corresponding congruent angles are congruent.

27. Two triangles with angles and sides congruent are congruent.

28. **UMBRELLAS** Umbrellas usually have eight congruent triangular sections with ribs of equal length. Are the statements \(\triangle JAD \cong \triangle IAE \) and \(\triangle JAD \cong \triangle EAI \) both correct? Explain.
ALGEBRA For Exercises 29 and 30, use the following information.\(\triangle QRS \cong \triangle GHJ\), \(RS = 12\), \(QR = 10\), \(QS = 6\), and \(HJ = 2x - 4\).
29. Draw and label a figure to show the congruent triangles.
30. Find \(x\).

ALGEBRA For Exercises 31 and 32, use the following information.\(\triangle JKL \cong \triangle DEF\), \(m\angle J = 36\), \(m\angle E = 64\), and \(m\angle F = 3x + 52\).
31. Draw and label a figure to show the congruent triangles.
32. Find \(x\).

33. PROOF The statements below can be used to prove that congruence of triangles is symmetric. Use the statements to construct a correct flow proof. Provide the reasons for each statement.
Given: \(\triangle RST \cong \triangle XYZ\)
Prove: \(\triangle XYZ \cong \triangle RST\)
Flow Proof:

\[
\begin{align*}
\angle X & \cong \angle R, \angle Y & \cong \angle L,
\angle S & \cong \angle T, \\
XY & \cong RS, YZ & \cong ST, XZ & \cong RT
\end{align*}
\]
\(\triangle RST \cong \triangle XYZ\) \(\triangle XYZ \cong \triangle RST\)

34. PROOF Copy the flow proof and provide the reasons for each statement.
Given: \(AB \parallel CD, AD \parallel CB, AD \perp DC, AB \parallel BC, AD \parallel BC, AB \parallel CD\)
Prove: \(\triangle ACD \cong \triangle CAB\)
Flow Proof:

\[
\begin{align*}
AB & \parallel CD, AD \parallel CB, AC \parallel CA, AD \perp DC, AB \parallel BC, AD \parallel BC, AB \parallel CD
\end{align*}
\]
\(\angle D\) is a rt. \(\angle B\) is a rt. \(\angle 1 \cong \angle 4\) \(\angle 2 \cong \angle 3\)
\(\triangle ACD \cong \triangle CAB\)

35. PROOF Write a flow proof to prove Congruence of triangles is reflexive. (Theorem 4.4)

36. CRITICAL THINKING \(\triangle RST\) is isosceles with \(RS = RT\), \(M, N,\) and \(P\) are midpoints of their sides, \(\angle S \cong \angle MPS\), and \(NP \cong MP\). What else do you need to know to prove that \(\triangle SMP \cong \triangle TNP\)?
37. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

Why are triangles used in bridges?
Include the following in your answer:
• whether the shape of the triangle matters, and
• whether the triangles appear congruent.

38. Determine which statement is true given \(\triangle ABC \cong \triangle XYZ \).

\[\begin{align*}
\text{A} & \quad BC \equiv ZX \\
\text{B} & \quad AC \equiv XZ \\
\text{C} & \quad AB \equiv YZ \\
\text{D} & \quad \text{cannot be determined}
\end{align*} \]

39. **ALGEBRA** Find the length of \(DF \) if \(D(-5, 4) \) and \(F(3, -7) \).

\[\begin{align*}
\text{A} & \quad \sqrt{5} \\
\text{B} & \quad \sqrt{13} \\
\text{C} & \quad \sqrt{57} \\
\text{D} & \quad \sqrt{185}
\end{align*} \]

Maintain Your Skills

Mixed Review

Find \(x \). (Lesson 4-2)

40.

41.

42.

Find \(x \) and the measure of each side of the triangle. (Lesson 4-1)

43. \(\triangle BCD \) is isosceles with \(BC \equiv CD \), \(BC = 2x + 4 \), \(BD = x + 2 \), and \(CD = 10 \).

44. \(\triangle HKT \) is equilateral with \(HK = x + 7 \) and \(HT = 4x - 8 \).

Write an equation in slope-intercept form for the line that satisfies the given conditions. (Lesson 3-4)

45. contains \((0, 3)\) and \((4, -3)\)
46. \(m = \frac{3}{4}, y\)-intercept = 8
47. parallel to \(y = -4x + 1 \); contains \((-3, 1)\)
48. \(m = -4 \), contains \((-3, 2)\)

Getting Ready for the Next Lesson

PREREQUISITE SKILL Find the distance between each pair of points.
(To review the Distance Formula, see Lesson 1-4.)

49. \((-1, 7), (1, 6)\)
50. \((8, 2), (4, -2)\)
51. \((3, 5), (5, 2)\)

Practice Quiz 1

Lessons 4-1 through 4-3

1. Identify the isosceles triangles in the figure, if \(FFH \) and \(DG \) are congruent perpendicular bisectors. (Lesson 4-1)

2. Find \(x \).

ALGEBRA \(\triangle ABC \) is equilateral with \(AB = 2x \), \(BC = 4x - 7 \), and \(AC = x + 3.5 \). (Lesson 4-1)

3. Find the measure of each side.

4. Find the measure of each numbered angle. (Lesson 4-2)

5. If \(\triangle MNP \cong \triangle JKL \), name the corresponding congruent angles and sides. (Lesson 4-3)
Making Concept Maps

When studying a chapter, it is wise to record the main topics and vocabulary you encounter. In this chapter, some of the new vocabulary words were triangle, acute triangle, obtuse triangle, right triangle, equiangular triangle, scalene triangle, isosceles triangle, and equilateral triangle. The triangles are all related by the size of the angles or the number of congruent sides.

A graphic organizer called a concept map is a convenient way to show these relationships. A concept map is shown below for the different types of triangles. The main ideas are in boxes. Any information that describes how to move from one box to the next is placed along the arrows.

Reading to Learn

1. Describe how to use the concept map to classify triangles by their side lengths.

2. In $\triangle ABC$, $m\angle A = 48$, $m\angle B = 41$, and $m\angle C = 91$. Use the concept map to classify $\triangle ABC$.

3. Identify the type of triangle that is linked to both classifications.
Draw a triangle and label the vertices X, Y, and Z.

Use a straightedge to draw any line ℓ and select a point R. Use a compass to construct RS on ℓ such that $RS \approx XZ$.

Using S as the center, draw an arc with radius equal to YZ.

Let T be the point of intersection of the two arcs. Draw RT and ST to form $\triangle RST$.

Using R as the center, draw an arc with radius equal to XY.

Cut out $\triangle RST$ and place it over $\triangle XYZ$. How does $\triangle RST$ compare to $\triangle XYZ$?

If the corresponding sides of two triangles are congruent, then the triangles are congruent. This is the Side-Side-Side Postulate, and is written as SSS.
Postulate 4.1

Side-Side-Side Congruence If the sides of one triangle are congruent to the sides of a second triangle, then the triangles are congruent.

Abbreviation: SSS

Example 1 Use SSS in Proofs

MARINE BIOLOGY The tail of an orca whale can be viewed as two triangles that share a common side. Write a two-column proof to prove that \(\triangle BYA \cong \triangle CYA \) if \(AB \cong AC \) and \(BY \cong CY \).

Given: \(AB \cong AC; BY \cong CY \)

Prove: \(\triangle BYA \cong \triangle CYA \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AB \cong AC; BY \cong CY)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (AY \cong AY)</td>
<td>2. Reflexive Property</td>
</tr>
<tr>
<td>3. (\triangle BYA \cong \triangle CYA)</td>
<td>3. SSS</td>
</tr>
</tbody>
</table>

Example 2 SSS on the Coordinate Plane

COORDINATE GEOMETRY Determine whether \(\triangle RTZ \cong \triangle JKL \) for \(R(2, 5), Z(1, 1), T(5, 2), L(-3, 0), K(-7, 1) \), and \(J(-4, 4) \). Explain.

Use the Distance Formula to show that the corresponding sides are congruent.

\[
\begin{align*}
RT &= \sqrt{(2 - 5)^2 + (5 - 2)^2} \\
&= \sqrt{9 + 9} \\
&= \sqrt{18} \\
&= 3 \sqrt{2} \\
JK &= \sqrt{(-4 - (-7))^2 + (4 - 1)^2} \\
&= \sqrt{9 + 9} \\
&= \sqrt{18} \\
&= 3 \sqrt{2} \\
TZ &= \sqrt{(5 - 1)^2 + (2 - 1)^2} \\
&= \sqrt{16 + 1} \\
&= \sqrt{17} \\
KL &= \sqrt{(-7 - (-3))^2 + (1 - 0)^2} \\
&= \sqrt{16 + 1} \\
&= \sqrt{17} \\
RZ &= \sqrt{(2 - 1)^2 + (5 - 1)^2} \\
&= \sqrt{1 + 16} \\
&= \sqrt{17} \\
JL &= \sqrt{(-4 - (-3))^2 + (4 - 0)^2} \\
&= \sqrt{1 + 16} \\
&= \sqrt{17} \\
\end{align*}
\]

\(RT = JK, TZ = KL, \) and \(RZ = JL \). By definition of congruent segments, all corresponding segments are congruent. Therefore, \(\triangle RTZ \cong \triangle JKL \) by SSS.

SAS POSTULATE Suppose you are given the measures of two sides and the angle they form, called the included angle. These conditions describe a unique triangle. Two triangles in which corresponding sides and the included pairs of angles are congruent provide another way to show that triangles are congruent.
Postulate 4.2

Side-Angle-Side Congruence If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.

Abbreviation: SAS

You can also construct congruent triangles given two sides and the included angle.

Construction

Congruent Triangles using Two Sides and the Included Angle

1. Draw a triangle and label its vertices A, B, and C.

2. Select a point K on line m. Use a compass to construct KL on m such that $KL \cong BC$.

3. Construct an angle congruent to $\angle B$ using KL as a side of the angle and point K as the vertex.

4. Construct JK such that $JK \cong AB$. Draw JL to complete $\triangle JKL$.

5. Cut out $\triangle JKL$ and place it over $\triangle ABC$. How does $\triangle JKL$ compare to $\triangle ABC$?

Study Tip

Flow Proofs

Flow proofs can be written vertically or horizontally.

Example 3 Use SAS in Proofs

Write a flow proof.

Given: X is the midpoint of \overline{BD},
X is the midpoint of \overline{AC}.

Prove: $\triangle DXC \cong \triangle BXA$

Flow Proof:

- **X is the midpoint of \overline{DB}**
 - $DX \cong BX$
 - **Given**
 - **Midpoint Theorem**

- **X is the midpoint of \overline{AC}**
 - $CX \cong AX$
 - **Given**
 - **Midpoint Theorem**

- **$\angle DXC \cong \angle BXA$**
 - **SAS**

- Vertical \triangle are \cong.

202 Chapter 4 Congruent Triangles
Lesson 4-4 Proving Congruence—SSS, SAS

Identify Congruent Triangles

Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove that they are congruent, write *not possible*.

a.

Each pair of corresponding sides are congruent. The triangles are congruent by the SSS Postulate.

b.

The triangles have three pairs of corresponding angles congruent. This does not match the SSS Postulate or the SAS Postulate. It is *not possible* to prove the triangles congruent.

Check for Understanding

Concept Check

1. **OPEN ENDED** Draw a triangle and label the vertices. Name two sides and the included angle.

2. **FIND THE ERROR** Carmelita and Jonathan are trying to determine whether $\triangle ABC$ is congruent to $\triangle DEF$.

 - **Carmelita** $\triangle ABC \cong \triangle DEF$ by SAS
 - **Jonathan** Congruence cannot be determined.

 Who is correct and why?

Guided Practice

Determine whether $\triangle EFG \cong \triangle MNP$ given the coordinates of the vertices. Explain.

3. $E(-4, -3), F(-2, 1), G(-2, -3), M(4, -3), N(2, 1), P(2, -3)$

4. $E(-2, -2), F(-4, 6), G(-3, 1), M(2, 2), N(4, 6), P(3, 1)$

5. Write a flow proof.

 Given: DE and BC bisect each other.

 Prove: $\triangle DGB \cong \triangle EGC$

6. Write a two-column proof.

 Given: $KM \parallel JL$, $KM \cong JL$

 Prove: $\triangle JKM \cong \triangle MLJ$

Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove that they are congruent, write *not possible*.

7.

8.
9. **PRECISION FLIGHT** The United States Navy Flight Demonstration Squadron, the Blue Angels, fly in a formation that can be viewed as two triangles with a common side. Write a two-column proof to prove that \(\triangle SRT \cong \triangle QRT \) if \(T \) is the midpoint of \(SQ \) and \(SR = QR \).

Application

Practice and Apply

Determine whether \(\triangle JKL \cong \triangle FGH \) given the coordinates of the vertices. Explain.

10. \(J(-3, 2), K(-7, 4), L(-1, 9), F(2, 3), G(4, 7), H(9, 1) \)

11. \(J(-1, 1), K(-2, -2), L(-5, -1), F(2, -1), G(3, -2), H(2, 5) \)

12. \(J(-1, -1), K(0, 6), L(2, 3), F(3, 1), G(5, 3), H(8, 1) \)

13. \(J(3, 9), K(4, 6), L(1, 5), F(1, 7), G(2, 4), H(-1, 3) \)

Write a flow proof.

14. Given: \(\overline{AE} \cong \overline{FC}, \overline{AB} \cong \overline{BC}, \overline{BE} \cong \overline{BF} \)
Prove: \(\triangle AFB \cong \triangle CEB \)

15. Given: \(\overline{RQ} \cong \overline{TQ} \cong \overline{YQ} \cong \overline{WQ} \)
Prove: \(\triangle QWT \cong \triangle QYR \)

Write a two-column proof.

16. Given: \(\triangle CDE \) is isosceles.
\(G \) is the midpoint of \(CE \).
Prove: \(\triangle CDG \cong \triangle EDG \)

17. Given: \(\triangle MRN \cong \triangle QRP \)
Prove: \(\triangle MNP \cong \triangle QPN \)

18. Given: \(\overline{AC} \cong \overline{GC} \)
\(EC \) bisects \(\overline{AG} \).
Prove: \(\triangle GEC \cong \triangle AEC \)

19. Given: \(\triangle GHJ \cong \triangle LKJ \)
Prove: \(\triangle GHL \cong \triangle LKG \)
20. **CATS** A cat’s ear is triangular in shape. Write a two-column proof to prove \(\triangle RST \cong \triangle PNM \) if \(RS = PN \), \(RT = MP \), \(\angle S = \angle N \), and \(\angle T = \angle M \).

21. **GEESE** This photograph shows a flock of geese flying in formation. Write a two-column proof to prove that \(\triangle EFG \cong \triangle HFG \), if \(EF = HF \) and \(G \) is the midpoint of \(EH \).

Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove that they are congruent, write **not possible**.

22.

23.

24.

25.

BASEBALL For Exercises 26 and 27, use the following information.

A baseball diamond is a square with four right angles and all sides congruent.

26. Write a two-column proof to prove that the distance from first base to third base is the same as the distance from home plate to second base.

27. Write a two-column proof to prove that the angle formed by second base, home plate, and third base is the same as the angle formed by second base, home plate, and first base.

28. **CRITICAL THINKING** Devise a plan and write a two-column proof for the following.

Given: \(DE = FB \), \(AE = FC \), \(AE \perp DB \), \(CF \perp DB \)

Prove: \(\triangle ABD \cong \triangle CDB \)

29. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How do land surveyors use congruent triangles?

Include the following in your answer:

- description of three methods to prove triangles congruent, and
- another example of a career that uses properties of congruent triangles.
30. Which of the following statements about the figure is true?
 - A) 90 > a + b
 - B) a + b > 90
 - C) a + b = 90
 - D) a > b

31. Classify the triangle with the measures of the angles in the ratio 3:6:7.
 - A) isosceles
 - B) acute
 - C) obtuse
 - D) right

Maintain Your Skills

Mixed Review

Identify the congruent triangles in each figure. (*Lesson 4-3*)

32. \(\triangle BCD \) and \(\triangle ABD \)
33. \(\triangle XYZ \) and \(\triangle WYZ \)
34. \(\triangle MNP \) and \(\triangle LPQ \)

Find each measure if \(PQ \perp QR \). (*Lesson 4-2*)

35. \(m \angle 2 \)
36. \(m \angle 3 \)
37. \(m \angle 5 \)
38. \(m \angle 4 \)
39. \(m \angle 1 \)
40. \(m \angle 6 \)

For Exercises 41–43, use the graphic at the right. (*Lesson 3-3*)

41. Find the rate of change from first quarter to the second quarter.
42. Find the rate of change from the second quarter to the third quarter.
43. Compare the rate of change from the first quarter to the second, and the second quarter to the third. Which had the greater rate of change?

USA TODAY Snapshots®

GDP slides in 2001

Gross domestic product in private industries, which generate 88% of GDP, slowed to 4.1% in 2000 from 4.8% in 1999.

Source: The Bureau of Economic Analysis

Getting Ready for the Next Lesson

PREREQUISITE SKILL \(\overline{BD} \) and \(\overline{AE} \) are angle bisectors and segment bisectors. Name the indicated segments and angles.

To review bisectors of segments and angles, see Lessons 1-5 and 1-6.

44. a segment congruent to \(\overline{EC} \)
45. an angle congruent to \(\angle ABD \)
46. an angle congruent to \(\angle BDC \)
47. a segment congruent to \(\overline{AD} \)
Vocabulary
• included side

How are congruent triangles used in construction?
The Bank of China Tower in Hong Kong has triangular trusses for structural support. These trusses form congruent triangles. In this lesson, we will explore two additional methods of proving triangles congruent.

ASA POSTULATE
Suppose you were given the measures of two angles of a triangle and the side between them, the included side. Do these measures form a unique triangle?

Construction
Congruent Triangles Using Two Angles and Included Side

1. Draw a triangle and label its vertices A, B, and C.
2. Draw any line m and select a point L. Construct LK such that LK ≅ CB.
3. Construct an angle congruent to ∠C at L using LK as a side of the angle.
4. Construct an angle congruent to ∠B at K using LK as a side of the angle. Label the point where the new sides of the angles meet J.
5. Cut out ΔJKL and place it over ΔABC. How does ΔJKL compare to ΔABC?

This construction leads to the Angle-Side-Angle Postulate, written as ASA.

Postulate 4.3
Angle-Side-Angle Congruence
If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.
Abbreviation: ASA

Reading Math
The included side refers to the side that each of the angles share.
Example 1 Use ASA in Proofs

Write a paragraph proof.

Given: \(\overline{CP} \) bisects \(\angle BCR \) and \(\angle BPR \).

Prove: \(\triangle BCP \equiv \triangle RCP \)

Proof:

Since \(\overline{CP} \) bisects \(\angle BCR \) and \(\angle BPR \), \(\angle BCP \equiv \angle RCP \) and \(\angle BPC \equiv \angle RPC. \overline{CP} \equiv \overline{CP} \) by the Reflexive Property. By ASA, \(\triangle BCP \equiv \triangle RCP \).

AAS Theorem Suppose you are given the measures of two angles and a nonincluded side. Is this information sufficient to prove two triangles congruent?

Geometry Activity

Angle-Angle-Side Congruence

Model

1. Draw a triangle on a piece of patty paper. Label the vertices \(A, B, \) and \(C \).
2. Copy \(\overline{AB}, \angle B, \) and \(\angle C \) on another piece of patty paper and cut them out.
3. Assemble them to form a triangle in which the side is not the included side of the angles.

Analyze

1. Place the original \(\triangle ABC \) over the assembled figure. How do the two triangles compare?
2. Make a conjecture about two triangles with two angles and the nonincluded side of one triangle congruent to two angles and the nonincluded side of the other triangle.

This activity leads to the Angle-Angle-Side Theorem, written as AAS.

Theorem 4.5

Angle-Angle-Side Congruence If two angles and a nonincluded side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.

Abbreviation: AAS

Example: \(\triangle JKL \equiv \triangle CAB \)

Proof Theorem 4.5

Given: \(\angle M \equiv \angle S, \angle J \equiv \angle R, \overline{MP} \equiv \overline{ST} \)

Prove: \(\triangle JMP \equiv \triangle RST \)

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle M \equiv \angle S, \angle J \equiv \angle R, \overline{MP} \equiv \overline{ST})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle P \equiv \angle T)</td>
<td>2. Third Angle Theorem</td>
</tr>
<tr>
<td>3. (\triangle JMP \equiv \triangle RST)</td>
<td>3. ASA</td>
</tr>
</tbody>
</table>
Lesson 4-5

Proving Congruence—ASA, AAS

You have learned several methods for proving triangle congruence. The Concept Summary lists ways to help you determine which method to use.

Concept Summary

Methods to Prove Triangle Congruence

<table>
<thead>
<tr>
<th>Definition of Congruent Triangles</th>
<th>SSS</th>
<th>SAS</th>
<th>ASA</th>
<th>AAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All corresponding parts of one triangle are congruent to the corresponding parts of the other triangle.</td>
<td>The three sides of one triangle must be congruent to the three sides of the other triangle.</td>
<td>Two sides and the included angle of one triangle must be congruent to two sides and the included angle of the other triangle.</td>
<td>Two angles and the included side of one triangle must be congruent to two angles and the included side of the other triangle.</td>
<td>Two angles and a nonincluded side of one triangle must be congruent to two angles and sides of the other triangle.</td>
</tr>
</tbody>
</table>

Example 2

Use AAS in Proofs

Write a flow proof.

Given:

\[\angle EAD \cong \angle EBC \]
\[AD \cong BC \]

Prove:

\[AE \cong BE \]

Flow Proof:

1. \(\angle EAD \cong \angle EBC \) (Given)
2. \(AD \cong BC \) (Given)
3. \(\triangle ADE \cong \triangle BCE \) (AAS)
4. \(AE \cong BE \) (CPCTC)

Reflexive Property

You have learned several methods for proving triangle congruence. The Concept Summary lists ways to help you determine which method to use.

Example 3

Determine if Triangles Are Congruent

ARCHITECTURE

This glass chapel was designed by Frank Lloyd Wright’s son, Lloyd Wright. Suppose the redwood supports, \(TU \) and \(TV \), measure 3 feet, \(TY = 1.6 \) feet, and \(m\angle U \) and \(m\angle V \) are 31. Determine whether \(\triangle TYU \cong \triangle TYV \). Justify your answer.

Explore

We are given three measurements of each triangle. We need to determine whether the two triangles are congruent.

Plan

Since \(m\angle U = m\angle V \) and \(\angle U \cong \angle V \). Likewise, \(TU = TV \) so \(TU \cong TV \), and \(TY = TY \) so \(TY \cong TY \). Check each possibility using the five methods you know.

Solve

We are given information about side-side-angle (SSA). This is not a method to prove two triangles congruent.

(continued on the next page)
Examine Use a compass, protractor, and ruler to draw a triangle with the given measurements. For simplicity of measurement, we will use centimeters instead of feet, so the measurements of the construction and those of the support beams will be proportional.

- Draw a segment 3.0 centimeters long.
- At one end, draw an angle of 31°. Extend the line longer than 3.0 centimeters.
- At the other end of the segment, draw an arc with a radius of 1.6 centimeters such that it intersects the line.

Notice that there are two possible segments that could determine the triangle. Since the given measurements do not lead to a unique triangle, we cannot show that the triangles are congruent.

Check for Understanding

Concept Check 1. Find a counterexample to show why AAA (Angle-Angle-Angle) cannot be used to prove triangle congruence.

2. OPEN ENDED Draw a triangle and label the vertices. Name two angles and the included side.

3. Explain why AAS is a theorem, not a postulate.

Guided Practice Write a flow proof.

4. Given: $GH \parallel KJ, GK \parallel HJ$
 Prove: $\triangle GJK \cong \triangle JGH$

5. Given: $WX \parallel YZ, \angle X \cong \angle Z$
 Prove: $\triangle WXY \cong \triangle YZW$

Write a paragraph proof.

6. Given: QS bisects $\angle RST; \angle R \cong \angle T$
 Prove: $\triangle QRS \cong \triangle QTS$

7. Given: $\angle E \cong \angle K, \angle DGH \cong \angle DHG$
 $EG \cong KH$
 Prove: $\triangle EGD \cong \triangle KHD$

Application 8. PARACHUTES Suppose ST and ML each measure 7 feet, SR and MK each measure 5.5 feet, and $m\angle T = m\angle L = 49$. Determine whether $\triangle SRT \cong \triangle MKL$. Justify your answer.
Write a flow proof.
9. Given: $EF \parallel GH$, $EF \cong GH$
Prove: $EK \cong KH$

10. Given: $DE \parallel JK$, DK bisects JL
Prove: $\triangle EGD \cong \triangle JGK$

11. Given: $\angle V \cong \angle S$, $TV \cong QS$
Prove: $VR \cong SR$

12. Given: $EJ \parallel FK$, $JK \parallel KH$, $EF \cong GH$
Prove: $\triangle EJG \cong \triangle FKH$

13. Given: $MN \cong PQ$, $\angle M \cong \angle Q$
Prove: $\angle 2 \cong \angle 3$

14. Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$
Prove: $\triangle MPL \cong \triangle QLN$

Write a paragraph proof.
15. Given: $\angle NOM \cong \angle POR$,
$NM \perp MR$
$PR \perp MR$, $NM \cong PR$
Prove: $MO \cong OR$

16. Given: DL bisects BN,
$\angle XLN \cong \angle XDB$
Prove: $LN \cong DB$

17. Given: $\angle F \cong \angle I$, $\angle E \cong \angle H$
$EC \cong GH$
Prove: $EF \cong HI$

18. Given: $TX \parallel SY$
$\angle TXY \cong \angle TSY$
Prove: $\triangle TSY \cong \triangle YXT$
Write a two-column proof.

19. Given: \(\angle MYT \cong \angle NYT \)
\(\angle MTY \cong \angle NTY \)
Prove: \(\triangle RYM \cong \triangle RYN \)

20. Given: \(\triangle BMI \cong \triangle KMT \)
\(\overline{IP} \cong \overline{PT} \)
Prove: \(\triangle IPK \cong \triangle TPB \)

GARDENING For Exercises 21 and 22, use the following information.
Beth is planning a garden. She wants the triangular sections, \(\triangle CFD \) and \(\triangle HFG \), to be congruent. \(F \) is the midpoint of \(\overline{DG} \), and \(DG = 16 \) feet.

21. Suppose \(\overline{CD} \) and \(\overline{GH} \) each measure 4 feet and the measure of \(\angle CFD \) is 29. Determine whether \(\triangle CFD \cong \triangle HFG \). Justify your answer.

22. Suppose \(F \) is the midpoint of \(\overline{CH} \), and \(\overline{CH} \cong \overline{DG} \). Determine whether \(\triangle CFD \cong \triangle HFG \). Justify your answer.

KITES For Exercises 23 and 24, use the following information.
Austin is building a kite. Suppose \(\overline{JL} \) is 2 feet, \(\overline{JM} \) is 2.7 feet, and the measure of \(\angle NJM \) is 68.

23. If \(N \) is the midpoint of \(\overline{JL} \) and \(\overline{KM} \parallel \overline{JL} \), determine whether \(\triangle JKN \cong \triangle LKN \). Justify your answer.

24. If \(\overline{JM} \cong \overline{LM} \) and \(\overline{NJM} \cong \overline{NLM} \), determine whether \(\triangle JNM \cong \triangle LNM \). Justify your answer.

Complete each congruence statement and the postulate or theorem that applies.

25. If \(\overline{IM} \cong \overline{RV} \) and \(\angle 2 \cong \angle 5 \), then \(\triangle INM \cong \triangle \? \) by \(\? \).

26. If \(\overline{IR} \parallel \overline{MV} \) and \(\overline{IR} \cong \overline{MV} \), then \(\triangle IRN \cong \triangle \? \) by \(\? \).

27. If \(\overline{IV} \) and \(\overline{RM} \) bisect each other, then \(\triangle RVN \cong \triangle \? \) by \(\? \).

28. If \(\angle MIR \cong \angle RVM \) and \(\angle 1 \cong \angle 6 \), then \(\triangle MRV \cong \triangle \? \) by \(\? \).

29. CRITICAL THINKING Aiko wants to estimate the distance between herself and a duck. She adjusts the visor of her cap so that it is in line with her line of sight to the duck. She keeps her neck stiff and turns her body to establish a line of sight to a point on the ground. Then she paces out the distance to the new point. Is the distance from the duck the same as the distance she just paced out? Explain your reasoning.
30. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How are congruent triangles used in construction?

Include the following in your answer:
• explain how to determine whether the triangles are congruent, and
• why it is important that triangles used for structural support are congruent.

31. In \(\triangle ABC \), \(\overline{AD} \) and \(\overline{DC} \) are angle bisectors and \(m \angle B = 76 \). What is the measure of \(\angle ADC \)?

\[\begin{align*}
\text{A} & \quad 26 \\
\text{B} & \quad 52 \\
\text{C} & \quad 76 \\
\text{D} & \quad 128
\end{align*} \]

32. **ALGEBRA** For a positive integer \(x \),

1 percent of \(x \) percent of 10,000 equals

\[\begin{align*}
\text{A} & \quad x \cdot x \cdot 10000 \\
\text{B} & \quad 10x \\
\text{C} & \quad 100x \\
\text{D} & \quad 1000x
\end{align*} \]

33. **Maintain Your Skills**

Write a flow proof. *(Lesson 4-4)*

33. Given: \(\overline{BA} \cong \overline{DE} \), \(\overline{DA} \cong \overline{BE} \)

Prove: \(\triangle BEA \cong \triangle DAE \)

34. Given: \(\overline{XZ} \perp \overline{WY} \)

\(\overline{XZ} \) bisects \(\overline{WY} \).

Prove: \(\triangle WZX \cong \triangle YZX \)

Verify that each of the following preserves congruence and name the congruence transformation. *(Lesson 4-3)*

35. \[\begin{align*}
\text{R} & \quad \text{T} \\
\text{O} & \quad \text{S} \\
\text{P} & \quad \text{M}
\end{align*} \]

36. \[\begin{align*}
\text{N} & \quad \text{L} \\
\text{M} & \quad \text{O} \\
\text{P} & \quad \text{R}
\end{align*} \]

Write each statement in if-then form. *(Lesson 2-3)*

37. Happy people rarely correct their faults.

38. A champion is afraid of losing.

Getting Ready for the Next Lesson

PREREQUISITE SKILL Classify each triangle according to its sides. *(To review classification by sides, see Lesson 4-1.)*

39. \[\begin{align*}
\text{A} & \quad \text{B} \\
\text{C} & \quad \text{D}
\end{align*} \]

40. \[\begin{align*}
\text{E} & \quad \text{F} \\
\text{G} & \quad \text{H}
\end{align*} \]

41. \[\begin{align*}
\text{I} & \quad \text{J} \\
\text{K} & \quad \text{L}
\end{align*} \]
Activity 1 Triangle Congruence

Model

Study each pair of right triangles.

a.

b.

c.

Analyze

1. Is each pair of triangles congruent? If so, which congruence theorem or postulate applies?

2. Rewrite the congruence rules from Exercise 1 using **leg**, (L), or **hypotenuse**, (H), to replace **side**. Omit the **A** for any right angle since we know that all right triangles contain a right angle and all right angles are congruent.

3. **Make a conjecture** If you know that the corresponding legs of two right triangles are congruent, what other information do you need to declare the triangles congruent? Explain.

In Lesson 4-5, you learned that SSA is not a valid test for determining triangle congruence. Can SSA be used to prove right triangles congruent?

Activity 2 SSA and Right Triangles

Make a Model

How many right triangles exist that have a hypotenuse of 10 centimeters and a leg of 7 centimeters?

Step 1 Draw \(\overline{XY}\) so that \(XY = 7\) centimeters.

Step 2 Use a protractor to draw a ray from \(Y\) that is perpendicular to \(\overline{XY}\).

Step 3 Open your compass to a width of 10 centimeters. Place the point at \(X\) and draw a long arc to intersect the ray.

Step 4 Label the intersection \(Z\) and draw \(\overline{XZ}\) to complete \(\triangle XYZ\).
Analyze

4. Does the model yield a unique triangle?
5. Can you use the lengths of the hypotenuse and a leg to show right triangles are congruent?
6. **Make a conjecture** about the case of SSA that exists for right triangles.

The two activities provide evidence for four ways to prove right triangles congruent.

Key Concept

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Leg-Leg Congruence If the legs of one right triangle are congruent to the corresponding legs of another right triangle, then the triangles are congruent.</td>
<td>LL</td>
<td></td>
</tr>
<tr>
<td>4.7 Hypotenuse-Angle Congruence If the hypotenuse and acute angle of one right triangle are congruent to the hypotenuse and corresponding acute angle of another right triangle, then the two triangles are congruent.</td>
<td>HA</td>
<td></td>
</tr>
<tr>
<td>4.8 Leg-Angle Congruence If one leg and an acute angle of one right triangle are congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.</td>
<td>LA</td>
<td></td>
</tr>
<tr>
<td>4.4 Hypotenuse-Leg Congruence If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.</td>
<td>HL</td>
<td></td>
</tr>
</tbody>
</table>

Right Triangle Congruence

PROOF Write a paragraph proof of each theorem.

7. Theorem 4.6
8. Theorem 4.7
9. Theorem 4.8 (*Hint*: There are two possible cases.)

Use the figure to write a two-column proof.

10. **Given**: \(ML \perp MK, JK \perp KM \)
 \[\angle J \equiv \angle L \]
 Prove: \(JM \equiv KL \)

11. **Given**: \(JK \perp KM, JM \equiv KL \)
 \[ML \parallel JK \]
 Prove: \(ML \equiv JK \)
Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Example: If \(\overline{AB} \cong \overline{CB} \), then \(\angle A \cong \angle C \).

PROPERTIES OF ISOSCELES TRIANGLES

In Lesson 4-1, you learned that isosceles triangles have two congruent sides. Like the right triangle, the parts of an isosceles triangle have special names.

The art of Lois Mailou Jones, a twentieth-century artist, includes paintings and textile design, as well as book illustration. Notice the isosceles triangles in this painting, *Damballah*.

In this activity, you will investigate the relationship of the base angles and legs of an isosceles triangle.

Geometry Activity

Isosceles Triangles

Model
- Draw an acute triangle on patty paper with \(\overline{AC} \cong \overline{BC} \).
- Fold the triangle through \(C \) so that \(A \) and \(B \) coincide.

Analyze
1. What do you observe about \(\angle A \) and \(\angle B \)?
2. Draw an obtuse isosceles triangle. Compare the base angles.
3. Draw a right isosceles triangle. Compare the base angles.

The results of the Geometry Activity suggest Theorem 4.9.
Example 1 Proof of Theorem

Write a two-column proof of the Isosceles Triangle Theorem.

Given: $\triangle PQR$, $PQ \equiv QR$

Prove: $\angle P \equiv \angle R$

Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Let S be the midpoint of PR.</td>
<td>1. Every segment has exactly one midpoint.</td>
</tr>
<tr>
<td>2. Draw an auxiliary segment QS.</td>
<td>2. Two points determine a line.</td>
</tr>
<tr>
<td>3. $PS \equiv RS$</td>
<td>3. Midpoint Theorem</td>
</tr>
<tr>
<td>4. $QS \equiv QS$</td>
<td>4. Congruence of segments is reflexive.</td>
</tr>
<tr>
<td>5. $PQ \equiv QR$</td>
<td>5. Given</td>
</tr>
<tr>
<td>6. $\triangle PQS \equiv \triangle RQS$</td>
<td>6. SSS</td>
</tr>
<tr>
<td>7. $\angle P \equiv \angle R$</td>
<td>7. CPCTC</td>
</tr>
</tbody>
</table>

Example 2 Find the Measure of a Missing Angle

Multiple-Choice Test Item

If $GH \equiv HK$, $HJ \equiv JK$, and $m\angle GJK = 100$, what is the measure of $\angle HGK$?

- **A** 10
- **B** 15
- **C** 20
- **D** 25

Read the Test Item

$\triangle GHK$ is isosceles with base \overline{HK}. Likewise, $\triangle HJK$ is isosceles with base \overline{HK}.

Solve the Test Item

Step 1 The base angles of $\triangle HJK$ are congruent. Let $x = m\angle KHJ = m\angle HKJ$.

\[
m\angle KHJ + m\angle HKJ + m\angle HJK = 180 \quad \text{Angle Sum Theorem}
\]

\[
x + x + 100 = 180 \quad \text{Substitution}
\]

\[
2x + 100 = 180 \quad \text{Add.}
\]

\[
2x = 80 \quad \text{Subtract 100 from each side.}
\]

\[
x = 40 \quad \text{So, } m\angle KHJ = m\angle HKJ = 40.
\]

Step 2 $\angle GHK$ and $\angle KHJ$ form a linear pair. Solve for $m\angle GHK$.

\[
m\angle KHJ + m\angle GHK = 180 \quad \text{Linear pairs are supplementary.}
\]

\[
40 + m\angle GHK = 180 \quad \text{Substitution}
\]

\[
m\angle GHK = 140 \quad \text{Subtract 40 from each side.}
\]

Step 3 The base angles of $\triangle GHK$ are congruent. Let y represent $m\angle HGK$ and $m\angle GKH$.

\[
m\angle GHK + m\angle HGK + m\angle GKH = 180 \quad \text{Angle Sum Theorem}
\]

\[
140 + y + y = 180 \quad \text{Substitution}
\]

\[
140 + 2y = 180 \quad \text{Add.}
\]

\[
2y = 40 \quad \text{Subtract 140 from each side.}
\]

\[
y = 20 \quad \text{Divide each side by 2.}
\]

The measure of $\angle HGK$ is 20. Choice C is correct.
The converse of the Isosceles Triangle Theorem is also true.

Theorem 4.10

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Abbreviation: Conv. of Isos. Δ Th.

Example: If \(\angle D \equiv \angle F \), then \(DE \equiv FE \).

You will prove Theorem 4.10 in Exercise 33.

Example 3 *Congruent Segments and Angles*

a. Name two congruent angles.

\(\angle AFC \) is opposite \(AC \) and \(\angle ACF \) is opposite \(AF \), so \(\angle AFC \equiv \angle ACF \).

b. Name two congruent segments.

By the converse of the Isosceles Triangle Theorem, the sides opposite congruent angles are congruent. So, \(BC \equiv BF \).

PROPERTIES OF EQUILATERAL TRIANGLES
Recall that an equilateral triangle has three congruent sides. The Isosceles Triangle Theorem also applies to equilateral triangles. This leads to two corollaries about the angles of an equilateral triangle.

Corollaries

| 4.3 | A triangle is equilateral if and only if it is equiangular. |
| 4.4 | Each angle of an equilateral triangle measures 60°. |

You will prove Corollaries 4.3 and 4.4 in Exercises 31 and 32.

Example 4 *Use Properties of Equilateral Triangles*

\(\triangle EFG \) is equilateral, and \(\overline{EH} \) bisects \(\angle E \).

a. Find \(m \angle 1 \) and \(m \angle 2 \).

Each angle of an equilateral triangle measures 60°.
So, \(m \angle 1 + m \angle 2 = 60 \). Since the angle was bisected, \(m \angle 1 = m \angle 2 \). Thus, \(m \angle 1 = m \angle 2 = 30 \).

b. **ALGEBRA**

Find \(x \).

\[m \angle EFH + m \angle 1 + m \angle EHF = 180 \]
\[60 + 30 + 15x = 180 \]
\[90 + 15x = 180 \]
\[15x = 90 \]
\[x = 6 \]

\(m \angle EFH = 60 \), \(m \angle 1 = 30 \), \(m \angle EHF = 15x \)
\[\text{Angle Sum Theorem} \]
\[\text{Add.} \]
\[\text{Subtract 90 from each side.} \]
\[\text{Divide each side by 15.} \]
Lesson 4-6
Isosceles Triangles

Concept Check

1. Explain how many angles in an isosceles triangle must be given to find the measures of the other angles.

2. Name the congruent sides and angles of isosceles \(\triangle W X Z \) with base \(\overline{WZ} \).

3. OPEN ENDED Describe a method to construct an equilateral triangle.

Guided Practice

Refer to the figure.

4. If \(\overline{AD} \cong \overline{AH} \), name two congruent angles.

5. If \(\angle BDH \cong \angle BHD \), name two congruent segments.

6. ALGEBRA Triangle \(\triangle GHF \) is equilateral with \(m \angle F = 3x + 4 \), \(m \angle G = 6y \), and \(m \angle H = 19z + 3 \). Find \(x \), \(y \), and \(z \).

Write a two-column proof.

7. Given: \(\triangle CTE \) is isosceles with vertex \(\angle C \).
 \[m \angle T = 60 \]
 Prove: \(\triangle CTE \) is equilateral.

Standardized Test Practice

8. If \(\overline{PQ} \cong \overline{QS} \), \(\overline{QR} \cong \overline{RS} \), and \(m \angle PRS = 72 \), what is the measure of \(\angle QPS \)?
 - (A) 27
 - (B) 54
 - (C) 63
 - (D) 72

Practice and Apply

Refer to the figure.

9. If \(\overline{LT} \cong \overline{LR} \), name two congruent angles.

10. If \(\overline{LX} \cong \overline{LW} \), name two congruent angles.

11. If \(\overline{SL} \cong \overline{QL} \), name two congruent angles.

12. If \(\angle LXY \cong \angle LYX \), name two congruent segments.

13. If \(\angle LSR \cong \angle LRS \), name two congruent segments.

14. If \(\angle LYW \cong \angle LYW \), name two congruent segments.

\(\triangle KLN \) and \(\triangle LMN \) are isosceles and \(m \angle JKN = 130 \).
Find each measure.

15. \(m \angle LNM \)

16. \(m \angle M \)

17. \(m \angle LKN \)

18. \(m \angle J \)

\(\triangle DFG \) and \(\triangle FGH \) are isosceles, \(m \angle FDH = 28 \) and \(\overline{DG} \cong \overline{FG} \cong \overline{FH} \). Find each measure.

19. \(m \angle DFG \)

20. \(m \angle DGF \)

21. \(m \angle FGH \)

22. \(m \angle GFH \)
In the figure, $\overline{JM} \cong \overline{PM}$ and $\overline{ML} \cong \overline{PL}$.

23. If $m\angle PLJ = 34$, find $m\angle JPM$.

24. If $m\angle PLJ = 58$, find $m\angle PJL$.

In the figure, $\overline{GK} \cong \overline{GH}$ and $\overline{HK} \cong \overline{KJ}$.

25. If $m\angle HGK = 28$, find $m\angle HJK$.

26. If $m\angle HGK = 42$, find $m\angle HJK$.

Triangle LMN is equilateral, and \overline{MP} bisects \overline{LN}.

27. Find x and y.

28. Find the measure of each side of $\triangle LMN$.

PROOF Write a two-column proof.

29. Given: $\triangle XKF$ is equilateral. \overline{XJ} bisects $\angle X$.

 Prove: J is the midpoint of \overline{KF}.

30. Given: $\triangle MLP$ is isosceles. N is the midpoint of \overline{MP}.

 Prove: $\overline{LN} \perp \overline{MP}$

31. Corollary 4.3

32. Corollary 4.4

33. Theorem 4.10

34. DESIGN The basic structure covering Spaceship Earth at the Epcot Center in Orlando, Florida, is a triangle. Describe the minimum requirement to show that these triangles are equilateral.

ALGEBRA Find x.

35. $2x + 5$

36. $3x - 13$

37. $(3x + 8)^\circ$

38. $(2x + 20)^\circ$

39. $(2x - 25)^\circ$

40. CRITICAL THINKING In the figure, $\triangle ABC$ is isosceles, $\triangle DCE$ is equilateral, and $\triangle FCG$ is isosceles. Find the measures of the five numbered angles at vertex C.

ARTISANS For Exercises 38 and 39, use the following information.

This geometric sign from the Grassfields area in Western Cameroon (Western Africa) uses approximations of isosceles triangles within and around two circles.

38. Trace the figure. Identify and draw one isosceles triangle from each set in the sign.

39. Describe the similarities between the different triangles.
41. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How are triangles used in art?

Include the following in your answer:
- at least three other geometric shapes frequently used in art, and
- a description of how isosceles triangles are used in the painting.

42. Given right triangle XYZ with hypotenuse XY, YP is equal to YZ. If $m \angle PYZ = 26$, find $m \angle XZP$.

43. **ALGEBRA** A segment is drawn from $(3, 5)$ to $(9, 13)$. What are the coordinates of the midpoint of this segment?

(A) $(3, 4)$ (B) $(12, 18)$ (C) $(6, 8)$ (D) $(6, 9)$

Maintain Your Skills

Mixed Review

Write a paragraph proof. (Lesson 4-5)

44. Given: $\angle N \equiv \angle D$, $\angle G \equiv \angle I$, $AN \equiv SD$

Prove: $\triangle ANG \equiv \triangle SDI$

45. Given: $VR \perp RS$, $UT \perp SU$, $RS \equiv US$

Prove: $\triangle VRS \equiv \triangle TUS$

Determine whether $\triangle QRS \equiv \triangle EGH$ given the coordinates of the vertices. Explain. (Lesson 4-4)

46. $Q(-3, 1)$, $R(1, 2)$, $S(-1, -2)$, $E(6, -2)$, $G(2, -3)$, $H(4, 1)$

47. $Q(1, -5)$, $R(5, 1)$, $S(4, 0)$, $E(-4, -3)$, $G(-1, 2)$, $H(2, 1)$

Construct a truth table for each compound statement. (Lesson 2-2)

48. a and b

49. $\sim p \text{ or } \sim q$

50. k and $\sim m$

51. $\sim y \text{ or } z$

Getting Ready for the Next Lesson

PREREQUISITE SKILL Find the coordinates of the midpoint of the segment with the given endpoints. (To review finding midpoints, see Lesson 1-5.)

52. $A(2, 15)$, $B(7, 9)$

53. $C(-4, 6)$, $D(2, -12)$

54. $E(3, 2.5)$, $F(7.5, 4)$

Practice Quiz 2

1. Determine whether $\triangle JML \equiv \triangle BDG$ given that $J(-4, 5)$, $M(-2, 6)$, $L(-1, 1)$, $B(-3, -4)$, $D(-4, -2)$, and $G(1, -1)$. (Lesson 4-4)

2. Write a two-column proof to prove that $\overline{AJ} \equiv \overline{EH}$, given $\angle A \equiv \angle H$, $\angle AEJ \equiv \angle HJE$. (Lesson 4-5)

$\triangle WXY$ and $\triangle XYZ$ are isosceles triangles and $m \angle XYZ = 128$. Find each measure. (Lesson 4-6)

3. $m \angle XWY$

4. $m \angle WXY$

5. $m \angle YZX$
Placing Figures on the Coordinate Plane

1. Use the origin as a vertex or center of the figure.
2. Place at least one side of a polygon on an axis.
3. Keep the figure within the first quadrant if possible.
4. Use coordinates that make computations as simple as possible.

POSITION AND LABEL TRIANGLES

- **Coordinate proof** uses figures in the coordinate plane and algebra to prove geometric concepts. The first step in writing a coordinate proof is the placement of the figure on the coordinate plane.

Key Concept

- Placing Figures on the Coordinate Plane

1. Use the origin as a vertex or center of the figure.
2. Place at least one side of a polygon on an axis.
3. Keep the figure within the first quadrant if possible.
4. Use coordinates that make computations as simple as possible.

Example 1

Position and Label a Triangle

Position and label isosceles triangle JKL on a coordinate plane so that base JK is a units long.

- Use the origin as vertex J of the triangle.
- Place the base of the triangle along the positive x-axis.
- Position the triangle in the first quadrant.
- Since K is on the x-axis, its y-coordinate is 0. Its x-coordinate is a because the base of the triangle is a units long.
- Since $\triangle JKL$ is isosceles, the x-coordinate of L is halfway between 0 and a or $\frac{a}{2}$. We cannot determine the y-coordinate in terms of a, so call it b.

Example 2

Find the Missing Coordinates

Name the missing coordinates of isosceles right $\triangle EFG$.

Vertex F is positioned at the origin; its coordinates are $(0, 0)$. Vertex E is on the y-axis, and vertex G is on the x-axis. So $\angle EFG$ is a right angle. Since $\triangle EFG$ is isosceles, $EF \equiv GF$.

The distance from E to F is a units. The distance from F to G must be the same. So, the coordinates of G are $(a, 0)$.
WRITE COORDINATE PROOFS After the figure has been placed on the coordinate plane and labeled, we can use coordinate proof to verify properties and to prove theorems. The Distance Formula, Slope Formula, and Midpoint Formula are often used in coordinate proof.

Example 3 Coordinate Proof

Write a coordinate proof to prove that the measure of the segment that joins the vertex of the right angle in a right triangle to the midpoint of the hypotenuse is one-half the measure of the hypotenuse.

The first step is to position and label a right triangle on the coordinate plane. Place the right angle at the origin and label it \(A \). Use coordinates that are multiples of 2 because the Midpoint Formula takes half the sum of the coordinates.

Given: right \(\triangle ABC \) with right \(\angle BAC \)

\(P \) is the midpoint of \(BC \).

Prove: \(AP = \frac{1}{2} BC \)

Proof:

By the Midpoint Formula, the coordinates of \(P \) are \((\frac{0 + 2c}{2}, \frac{2b + 0}{2}) \) or \((c, b)\).

Use the Distance Formula to find \(AP \) and \(BC \).

\[
AP = \sqrt{(c - 0)^2 + (b - 0)^2} = \sqrt{c^2 + b^2}
\]

\[
BC = \sqrt{(2c - 0)^2 + (0 - 2b)^2} = \sqrt{4c^2 + 4b^2} \text{ or } 2 \sqrt{c^2 + b^2}
\]

\[
\frac{1}{2} BC = \sqrt{c^2 + b^2}
\]

Therefore, \(AP = \frac{1}{2} BC \).

Example 4 Classify Triangles

ARROWHEADS Write a coordinate proof to prove that this arrowhead is shaped like an isosceles triangle. The arrowhead is 3 inches long and 1.5 inches wide.

The first step is to label the coordinates of each vertex. \(Q \) is at the origin, and \(T \) is at \((1.5, 0)\). The \(y \)-coordinate of \(R \) is 3. The \(x \)-coordinate is halfway between 0 and 1.5 or 0.75. So, the coordinates of \(R \) are \((0.75, 3)\).

If the legs of the triangle are the same length, the triangle is isosceles. Use the Distance Formula to determine the lengths of \(QR \) and \(RT \).

\[
QR = \sqrt{(0.75 - 0)^2 + (3 - 0)^2} = \sqrt{0.5625 + 9} \text{ or } \sqrt{9.5625}
\]

\[
RT = \sqrt{(1.5 - 0.75)^2 + (0 - 3)^2} = \sqrt{0.5625 + 9} \text{ or } \sqrt{9.5625}
\]

Since each leg is the same length, \(\triangle QRT \) is isosceles. The arrowhead is shaped like an isosceles triangle.
1. Explain how to position a triangle on the coordinate plane to simplify a proof.

2. OPEN ENDED Draw a scalene right triangle on the coordinate plane for use in a coordinate proof. Label the coordinates of each vertex.

Guided Practice

Position and label each triangle on the coordinate plane.

3. isosceles $\triangle FGH$ with base FH that is $2b$ units long
4. equilateral $\triangle CDE$ with sides a units long

Find the missing coordinates of each triangle.

5. 6. 7.

8. Write a coordinate proof for the following statement.
 The midpoint of the hypotenuse of a right triangle is equidistant from each of the vertices.

Application

9. TEPEES Write a coordinate proof to prove that the tepee is shaped like an isosceles triangle. Suppose the tepee is 8 feet tall and 4 feet wide.

Practice and Apply

Position and label each triangle on the coordinate plane.

10. isosceles $\triangle QRT$ with base QR that is b units long
11. equilateral $\triangle MNP$ with sides $2a$ units long
12. isosceles right $\triangle JML$ with hypotenuse JM and legs c units long
13. equilateral $\triangle WXZ$ with sides $\frac{1}{2}b$ units long
14. isosceles $\triangle PWY$ with a base PW that is $(a + b)$ units long
15. right $\triangle XYZ$ with hypotenuse XZ, $ZY = 2(XY)$, and XY b units long

Find the missing coordinates of each triangle.

16. 17. 18.
Write a coordinate proof for each statement.
25. The segments joining the vertices to the midpoints of the legs of an isosceles triangle are congruent.
26. The three segments joining the midpoints of the sides of an isosceles triangle form another isosceles triangle.
27. If a line segment joins the midpoints of two sides of a triangle, then it is parallel to the third side.
28. If a line segment joins the midpoints of two sides of a triangle, then its length is equal to one-half the length of the third side.
29. **STEEPLECHASE** Write a coordinate proof to prove that triangles \(ABD \) and \(FBD \) are congruent. \(BD \) is perpendicular to \(AF \), and \(B \) is the midpoint of the upper bar of the hurdle.

NAVIGATION For Exercises 30 and 31, use the following information.
A motor boat is located 800 yards east of the port. There is a ship 800 yards to the east, and another ship 800 yards to the north of the motor boat.
30. Write a coordinate proof to prove that the port, motor boat, and the ship to the north form an isosceles right triangle.
31. Write a coordinate proof to prove that the distance between the two ships is the same as the distance from the port to the northern ship.

HIKING For Exercises 32 and 33, use the following information.
Tami and Juan are hiking. Tami hikes 300 feet east of the camp and then hikes 500 feet north. Juan hikes 500 feet west of the camp and then 300 feet north.
32. Write a coordinate proof to prove that Juan, Tami, and the camp form a right triangle.
33. Find the distance between Tami and Juan.
Find the coordinates of point Z so $\triangle XYZ$ is the indicated type of triangle. Point X has coordinates $(0, 0)$ and Y has coordinates (a, b).

34. right triangle \hspace{1cm} 35. isosceles triangle \hspace{1cm} 36. scalene triangle
with right angle Z \hspace{1cm} with base XZ

37. **CRITICAL THINKING** Classify $\triangle ABC$ by its angles and its sides. Explain.

38. **WRITING IN MATH** Answer the question that was posed at the beginning of the lesson.

How can the coordinate plane be useful in proofs?

Include the following in your answer:
- types of proof, and
- a theorem from this chapter that could be proved using a coordinate proof.

39. What is the length of the segment whose endpoints are at $(1, -2)$ and $(-3, 1)$?
 \hspace{1cm} (A) 3 \hspace{1cm} (B) 4 \hspace{1cm} (C) 5 \hspace{1cm} (D) 6

40. **ALGEBRA** What are the coordinates of the midpoint of the line segment whose endpoints are $(-5, 4)$ and $(-2, -1)$?
 \hspace{1cm} (A) $(3, 3)$ \hspace{1cm} (B) $(-3.5, 1.5)$ \hspace{1cm} (C) $(-1.5, 2.5)$ \hspace{1cm} (D) $(3.5, -2.5)$

Maintain Your Skills

Mixed Review

Write a two-column proof. (Lessons 4-5 and 4-6)

41. Given: $\angle 3 \cong \angle 4$
Prove: $QR \cong QS$

42. Given: isosceles triangle JKN with vertex $\angle N$, $JK \parallel LM$
Prove: $\triangle NML$ is isosceles.

43. Given: $AD \cong CE$, $AD \parallel CE$
Prove: $\triangle ABD \cong \triangle EBC$

44. Given: $WX \cong XY$, $\angle V \cong \angle Z$
Prove: $\overline{WV} \cong \overline{YZ}$

State which lines, if any, are parallel. State the postulate or theorem that justifies your answer. (Lesson 3-5)

45.

46.

47.

Critical Thinking

Classify $\triangle ABC$ by its angles and its sides. Explain.
Exercises Choose the letter of the word or phrase that best matches each statement.

1. A triangle with an angle whose measure is greater than 90 is a(n) __ triangle.
 a. acute
 b. AAS Theorem
 c. ASA Theorem
 d. Angle Sum Theorem
 e. equilateral
 f. exterior
 g. isosceles
 h. obtuse
 i. right
 j. SAS Theorem
 k. SSS Theorem

2. A triangle with exactly two congruent sides is a(n) __ triangle.
3. The __ states that the sum of the measures of the angles of a triangle is 180.
4. If \(\angle B \cong \angle E, \overline{AB} \cong \overline{DE}, \) and \(\overline{BC} \cong \overline{EF} \), then \(\triangle ABC \cong \triangle DEF \) by __.
5. In an equiangular triangle, all angles are __ angles.
6. If two angles of a triangle and their included side are congruent to two angles and the included side of another triangle, this is called the __.
7. If \(\angle A \cong \angle F, \angle B \cong \angle G, \) and \(\overline{AC} \cong \overline{FH} \), then \(\triangle ABC \cong \triangle FGH \), by __.
8. A(n) __ angle of a triangle has a measure equal to the measures of the two remote interior angles of the triangle.
 a. acute
 b. AAS Theorem
 c. ASA Theorem
 d. Angle Sum Theorem
 e. equilateral
 f. exterior
 g. isosceles
 h. obtuse
 i. right
 j. SAS Theorem
 k. SSS Theorem

Lesson-by-Lesson Review

4-1 Classifying Triangles

Concept Summary

- Triangles can be classified by their angles as acute, obtuse, or right.
- Triangles can be classified by their sides as scalene, isosceles, or equilateral.

Example

Find the measures of the sides of \(\triangle TUV \). Classify the triangle by sides.

Use the Distance Formula to find the measure of each side.

\[TU = \sqrt{[-5 - (-2)]^2 + [4 - (-2)]^2} \]
\[= \sqrt{9 + 36} \text{ or } \sqrt{45} \]

\[UV = \sqrt{[3 - (-5)]^2 + (1 - 4)^2} \]
\[= \sqrt{64 + 9} \text{ or } \sqrt{73} \]

\[VT = \sqrt{(-2 - 3)^2 + (-2 - 1)^2} \]
\[= \sqrt{25 + 9} \text{ or } \sqrt{34} \]

Since none of the side measures are equal, \(\triangle TUV \) is scalene.
Exercises Classify each triangle by its angles and by its sides if $m\angle ABC = 100$. See Examples 1 and 2 on pages 178 and 179.

9. $\triangle ABC$
10. $\triangle BDP$
11. $\triangle BPQ$

4-2 Angles of Triangles

Concept Summary

- The sum of the measures of the angles of a triangle is 180.
- The measure of an exterior angle is equal to the sum of the measures of the two remote interior angles.

Example

If $TU \perp UV$ and $UV \perp VW$, find $m\angle 1$.

$m\angle 1 + 72 + m\angle TVW = 180$
$m\angle 1 + 72 + (90 - 27) = 180$
$m\angle 1 + 135 = 180$
$m\angle 1 = 45$

Exercises Find each measure. See Example 1 on page 186.

12. $m\angle 1$
13. $m\angle 2$
14. $m\angle 3$

4-3 Congruent Triangles

Concept Summary

- Two triangles are congruent when all of their corresponding parts are congruent.

Example

If $\triangle EFG \cong \triangle JKL$, name the corresponding congruent angles and sides.

$\angle E \cong \angle J$, $\angle F \cong \angle K$, $\angle G \cong \angle L$, $EF \cong JK$, $FG \cong KL$, and $EG \cong JL$.

Exercises Name the corresponding angles and sides for each pair of congruent triangles. See Example 1 on page 193.

15. $\triangle EFG \cong \triangle DCB$
16. $\triangle LCD \cong \triangle GCF$
17. $\triangle NCK \cong \triangle KER$

4-4 Proving Congruence—SSS, SAS

Concept Summary

- If all of the corresponding sides of two triangles are congruent, then the triangles are congruent (SSS).
- If two corresponding sides of two triangles and the included angle are congruent, then the triangles are congruent (SAS).
Determine whether $\triangle ABC \cong \triangle TUV$. Explain.

$$AB = \sqrt{[-1 - (-2)]^2 + (1 - 0)^2} \quad TU = \sqrt{(3 - 4)^2 + (-1 - 0)^2}$$

$$= \sqrt{1 + 1} \quad = \sqrt{1 + 1}$$

$$BC = \sqrt{[0 - (-1)]^2 + (-1 - 1)^2} \quad UV = \sqrt{(2 - 3)^2 + [1 - (-1)]^2}$$

$$= \sqrt{1 + 4} \quad = \sqrt{1 + 4}$$

$$CA = \sqrt{(-2 - 0)^2 + [0 - (-1)]^2} \quad VT = \sqrt{(4 - 2)^2 + (0 - 1)^2}$$

$$= \sqrt{4 + 1} \quad = \sqrt{4 + 1}$$

By the definition of congruent segments, all corresponding sides are congruent. Therefore, $\triangle ABC \cong \triangle TUV$ by SSS.

Determine whether $\triangle MNP \cong \triangle QRS$ given the coordinates of the vertices. Explain. See Example 2 on page 201.

18. $M(0, 3), N(-4, 3), P(-4, 6), Q(5, 6), R(2, 6), S(2, 2)$
19. $M(3, 2), N(7, 4), P(6, 6), Q(-2, 3), R(-4, 7), S(-6, 6)$

4-5 Proving Congruence—ASA, AAS

Concept Summary

- If two pairs of corresponding angles and the included sides of two triangles are congruent, then the triangles are congruent (ASA).
- If two pairs of corresponding angles and a pair of corresponding nonincluded sides of two triangles are congruent, then the triangles are congruent (AAS).

Write a proof.

Given: $JK || MN; L$ is the midpoint of KM.
Prove: $\triangle JKL \cong \triangle NLM$

Flow proof:

Given $JK || MN$ Alt. int. \triangle's are \cong

L is the midpoint of KM Midpoint Theorem

$KL \cong ML$ ASA

Exercises For Exercises 20 and 21, use the figure. Write a two-column proof for each of the following. See Example 2 on page 209.

20. Given: DF bisects $\angle CDE$. $\angle CDE$, $\angle DGE$ $\angle GCF \cong \angle GEF$
Prove: $\triangle DGC \cong \triangle DGE$ $\triangle DFC \cong \triangle DFE$
Isosceles Triangles

Concept Summary
- Two sides of a triangle are congruent if and only if the angles opposite those sides are congruent.
- A triangle is equilateral if and only if it is equiangular.

Example

If $FG \cong GI$, $GI \cong IH$, $FH \cong FI$, and $m \angle GJH = 40$, find $m \angle H$.

$\triangle GHJ$ is isosceles with base \overline{GH}, so $\angle JGH \equiv \angle H$ by the Isosceles Triangle Theorem. Thus, $m \angle JGH = m \angle H$.

$m \angle GJH + m \angle JGH + m \angle H = 180$ \hspace{1cm} \text{Angle Sum Theorem}

$40 + 2(m \angle H) = 180$ \hspace{1cm} \text{Substitution}

$2(m \angle H) = 140$ \hspace{1cm} \text{Subtract 40 from each side.}

$m \angle H = 70$ \hspace{1cm} \text{Divide each side by 2.}$

Exercises

For Exercises 22–25, refer to the figure at the right.

See Example 2 on page 217.

22. If $PQ \cong UQ$ and $m \angle P = 32$, find $m \angle PUQ$.
23. If $PQ \cong UQ$, $PR \cong RT$, and $m \angle PQU = 40$, find $m \angle R$.
24. If $RQ \cong RS$ and $m \angle RQS = 75$, find $m \angle R$.
25. If $RQ \cong RS$, $RP \cong RT$, and $m \angle RQS = 80$, find $m \angle P$.

Triangles and Coordinate Proof

Concept Summary
- Coordinate proofs use algebra to prove geometric concepts.
- The Distance Formula, Slope Formula, and Midpoint Formula are often used in coordinate proof.

Example

Position and label isosceles right triangle ABC with legs of length a units on the coordinate plane.

- Use the origin as the vertex of $\triangle ABC$ that has the right angle.
- Place each base along an axis.
- Since B is on the x-axis, its y-coordinate is 0. Its x-coordinate is a because the leg AB of the triangle is a units long.
- Since $\triangle ABC$ is isosceles, C should also be a distance of a units from the origin. Its coordinates are $(0, -a)$.

Exercises

Position and label each triangle on the coordinate plane.

See Example 1 on page 222.

26. isosceles $\triangle TRI$ with base \overline{TI} 4a units long
27. equilateral $\triangle BCD$ with side length 6m units long
28. right $\triangle JKL$ with leg lengths of a units and b units
Choose the letter of the type of triangle that best matches each phrase.
1. triangle with no sides congruent
 a. isosceles
 b. scalene
 c. equilateral
2. triangle with at least two sides congruent
3. triangle with all sides congruent

Identify the indicated triangles in the figure if \(PB \perp AD \) and \(PA \cong PC \).

4. obtuse
5. isosceles
6. right

Find the measure of each angle in the figure.
7. \(m\angle 1 \)
8. \(m\angle 2 \)
9. \(m\angle 3 \)

Name the corresponding angles and sides for each pair of congruent triangles.
10. \(\triangle DEF \cong \triangle PQR \)
11. \(\triangle FMG \cong \triangle HNJ \)
12. \(\triangle XYZ \cong \triangle ZYX \)

Determine whether \(\triangle JKL \cong \triangle MNP \) given \(J(-1, -2), K(2, -3), L(3, 1), M(-6, -7), N(-2, 1), \) and \(P(5, 3) \). Explain.

Write a flow proof.
Given: \(\triangle JKM \cong \triangle JNM \)
Prove: \(\triangle JKL \cong \triangle JNL \)

In the figure, \(\overline{JF} \cong \overline{HH} \) and \(\overline{GF} \cong \overline{GH} \).
15. If \(m\angle JFH = 34 \), find \(m\angle J \).
16. If \(m\angle GHJ = 152 \) and \(m\angle G = 32 \), find \(m\angle JFH \).

LANDSCAPING A landscaper designed a garden shaped as shown in the figure. The landscaper has decided to place point \(B \) 22 feet east of point \(A \), point \(C \) 44 feet east of point \(A \), point \(E \) 36 feet south of point \(A \), and point \(D \) 36 feet south of point \(C \). The angles at points \(A \) and \(C \) are right angles. Prove that \(\triangle ABE \cong \triangle CBD \).

STANDARDIZED TEST PRACTICE In the figure, \(\triangle FGH \) is a right triangle with hypotenuse \(\overline{FH} \) and \(GJ = GH \). What is the measure of \(\angle JGH \)?

A 104
B 62
C 56
D 28
1. In 2002, Capitol City had a population of 2010, and Shelbyville had a population of 1040. If Capitol City grows at a rate of 150 people a year and Shelbyville grows at a rate of 340 people a year, when will the population of Shelbyville be greater than that of Capitol City? (Prerequisite Skill)

2. Which unit is most appropriate for measuring liquid in a bottle? (Lesson 1-2)

3. A 9-foot tree casts a shadow on the ground. The distance from the top of the tree to the end of the shadow is 12 feet. To the nearest foot, how long is the shadow? (Lesson 1-3)

4. Which of the following is the inverse of the statement If it is raining, then Kamika carries an umbrella? (Lesson 2-2)

[A] If Kamika carries an umbrella, then it is raining.
[B] If Kamika does not carry an umbrella, then it is not raining.
[C] If it is not raining, then Kamika carries an umbrella.
[D] If it is not raining, then Kamika does not carry an umbrella.

5. Students in a math classroom simulated stock trading. Kris drew the graph below to model the value of his shares at closing. The graph that modeled the value of Mitzi’s shares was parallel to the one Kris drew. Which equation might represent the line for Mitzi’s graph? (Lesson 3-3)

[A] $-2x - y = 1$
[B] $x - 2y = 1$
[C] $x + 2y = 1$
[D] $2x - y = 1$

6. What is $m \angle EFG$? (Lesson 4-2)

7. In the figure, $\triangle ABD \cong \triangle CBD$. If A has the coordinates $(-2, 4)$, what are the coordinates of C? (Lesson 4-3)

[A] $(-4, -2)$ [B] $(-4, 2)$ [C] $(2, -4)$ [D] $(2, -4)$

8. The wings of some butterflies can be modeled by triangles as shown. If $\overline{AC} \cong \overline{DC}$ and $\angle ACB \cong \angle ECD$, which additional statements are needed to prove that $\triangle ACB \cong \triangle ECD$? (Lesson 4-4)

[A] $\overline{BC} \cong \overline{CE}$
[B] $\overline{AB} \cong \overline{ED}$
[C] $\angle BAC \cong \angle CED$
[D] $\angle ABC \cong \angle CDE$
Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

9. Find the product \(3s^2(2s^3 - 7)\).
 (Prerequisite Skill)

10. After a long workout, Brian noted, “If I do not drink enough water, then I will become dehydrated.” He then made another statement, “If I become dehydrated, then I did not drink enough water.” How is the second statement related to the original statement? (Lesson 2-2)

11. On a coordinate map, the towns of Creston and Milford are located at \((-1, -1)\) and \((1, 3)\), respectively. A third town, Dixville, is located at \((x, -1)\) so that Creston and Dixville are endpoints of the base of the isosceles triangle formed by the three locations. What is the value of \(x\)? (Lesson 4-1)

12. A watchtower, built to help prevent forest fires, was designed as an isosceles triangle. If the side of the tower meets the ground at a \(105^\circ\) angle, what is the measure of the angle at the top of the tower? (Lesson 4-2)

13. During a synchronized flying show, airplane \(A\) and airplane \(D\) are equidistant from the ground. They descend at the same angle to land at points \(B\) and \(E\), respectively. Which postulate would prove that \(\triangle ABC \cong \triangle DEF\)? (Lesson 4-4)

14. \(\triangle ABC\) is an isosceles triangle with \(AB \cong BC\), and the measure of vertex angle \(B\) is three times \(m\angle A\). What is \(m\angle C\)? (Lesson 4-6)

Part 3 Extended Response

Record your answers on a sheet of paper. Show your work.

15. Train tracks \(a\) and \(b\) are parallel lines although they appear to come together to give the illusion of distance in a drawing. All of the railroad ties are parallel to each other.

 a. What is the value of \(x\)? (Lesson 3-1)
 b. What is the relationship between the tracks and the ties that run across the tracks? (Lesson 1-5)
 c. What is the relationship between \(\angle 1\) and \(\angle 2\)? Explain. (Lesson 3-2)

16. The measures of the angles of \(\triangle ABC\) are \(5x\), \(4x - 1\), and \(3x + 13\).
 a. Draw a figure to illustrate \(\triangle ABC\). (Lesson 4-1)
 b. Find the measure of each angle of \(\triangle ABC\). Explain. (Lesson 4-2)
 c. Prove that \(\triangle ABC\) is an isosceles triangle. (Lesson 4-6)